cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174510 Continued fraction expansion for exp( Sum_{n>=1} 1/(n*A080040(n)) ), where A080040(n) = (1+sqrt(3))^n + (1-sqrt(3))^n.

Original entry on oeis.org

1, 1, 3, 1, 9, 13, 1, 37, 51, 1, 141, 193, 1, 529, 723, 1, 1977, 2701, 1, 7381, 10083, 1, 27549, 37633, 1, 102817, 140451, 1, 383721, 524173, 1, 1432069, 1956243, 1, 5344557, 7300801, 1, 19946161, 27246963, 1, 74440089, 101687053, 1, 277814197
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2010

Keywords

Examples

			Let L = Sum_{n>=1} 1/(n*A080040(n)) or, more explicitly,
L = 1/2 + 1/(2*8) + 1/(3*20) + 1/(4*56) + 1/(5*152) + 1/(6*416) +...
so that L = 0.5855329921665857283309456463364081071245363598803...
then exp(L) = 1.7959479567807442397990076546690432122217738278933...
equals the continued fraction given by this sequence:
exp(L) = [1;1,3,1,9,13,1,37,51,1,141,193,1,529,723,1,...]; i.e.,
exp(L) = 1 + 1/(1 + 1/(3 + 1/(1 + 1/(9 + 1/(13 + 1/(1 +...)))))).
Compare these partial quotients to A080040(n)/2^[n/2], n=1,2,3,...:
[2,4,10,14,38,52,142,194,530,724,1978,2702,7382,10084,27550,...],
where A080040 begins:
[2,8,20,56,152,416,1136,3104,8480,23168,63296,172928,472448,...].
		

Crossrefs

Programs

  • PARI
    {a(n)=local(L=sum(m=1,2*n+1000,1./(m*round((1+sqrt(3))^m+(1-sqrt(3))^m))));contfrac(exp(L))[n]}

Formula

a(3n-3) = 1, a(3n-2) = A080040(2n-1)/2^(n-1) - 1, a(3n-1) = A080040(2n)/2^n - 1, for n>=1 [conjecture].
a(n) = 5*a(n-3)-5*a(n-6)+a(n-9). G.f.: -(x^2-x+1)*(x^6-2*x^5-2*x^4-2*x^3+4*x^2+2*x+1) / ((x-1)*(x^2+x+1)*(x^6-4*x^3+1)). [Colin Barker, Jan 20 2013]