A174511 The number of isomorphism classes of subgroups of the symmetric group S_n.
1, 2, 4, 9, 16, 29, 55, 137, 241, 453, 894, 2065, 3845
Offset: 1
Examples
a(3) = 4 since S_3 contains up to isomorphism exactly one subgroup of each of the orders 1,2,3,6.
Links
- A. Distler and T. Kelsey, The semigroups of order 9 and their automorphism groups, arXiv preprint arXiv:1301.6023 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 19 2013
- J. Schmidt, Enumerating all subgroups of the symmetric group.
Programs
-
GAP
a:=[]; for n in [1,2,3,4,5,6,7,8,9,10] do G:=SymmetricGroup(n); R:=ConjugacyClassesSubgroups(G); RR:=ListX(R,Representative); T:=[RR[1]]; for g in RR do flag:=false; for h in T do if IsomorphismGroups(g,h)<>fail then flag:=true; break; fi; od; if flag=false then Add(T,g); fi; od; Add(a,Size(T)); od; Print(a,"\n");
Extensions
a(11) and a(12) from Stephen A. Silver, Feb 24 2013
a(13) (as calculated by Jack Schmidt) from L. Edson Jeffery, May 26 2013
Comments