A174533 Almost practical numbers.
70, 350, 490, 770, 910, 945, 1190, 1330, 1575, 1610, 1750, 2030, 2170, 2205, 2450, 2584, 2590, 2835, 2870, 3010, 3128, 3290, 3430, 3465, 3710, 3850, 3944, 4095, 4130, 4216, 4270, 4550, 4690, 4725, 5355, 5390, 5775, 5950, 5985, 6370, 6615, 6650, 6825
Offset: 1
Keywords
Examples
The divisors of 70 are 1, 2, 5, 7, 10, 14, 35, 70 and sigma(70) = 144. The numbers from 1 to 144 that can be represented as the sum of distinct divisors of 70 are 1, 2, 3=2+1, 5, 6=5+1, 7, ... , 138=70+35+14+10+7+2, 139=70+35+14+10+7+2+1, 141=70+59+7+5, 142=70+59+7+5+1, 143=70+59+7+5+2, 144=70+59+7+5+2+1. The only two excluded numbers are 4 and 140=sigma(70)-4 as mentionned in comments. - _Bernard Schott_, Sep 25 2019
Links
- Amiram Eldar, Table of n, a(n) for n = 1..3000
- B. M. Stewart, Sums of distinct divisors, American Journal of Mathematics, Vol. 76, No. 4 (1954), pp. 779-785.
Programs
-
Mathematica
CountNumbers[n_] := Module[{d=Divisors[n],t,x}, t=CoefficientList[Product[1+x^i, {i,d}], x]; Count[Rest[t], _?(#>0&)]]; Select[Range[1000], CountNumbers[ # ] == DivisorSigma[1,# ]-2&]
Comments