cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174586 Number of n X n (0,1) matrices with two 1's in each row having positive permanent.

Original entry on oeis.org

0, 1, 24, 954, 59040, 5295150, 651354480, 105393619800, 21717404916480, 5554438422838200, 1726882980691176000, 641506478978753110800, 280659563041747649760000, 142843312073975729801785200, 83684308104396267184700784000, 55915646244745131440225950320000
Offset: 1

Views

Author

Vladimir Shevelev, Mar 23 2010

Keywords

Comments

a(n) is the normalized volume of the convex hull of (classical) parking functions of length n. - Andrés R. Vindas-Meléndez, Jan 13 2023

References

  • Vladimir Shevelev, On the permanent of the stochastic (0,1)-matrices with equal row sums, Izvestia Vuzov of the North-Caucasus region, Nature sciences 1 (1997), 21-38 (in Russian).

Crossrefs

Programs

  • Mathematica
    Table[n!/2^n * Sum[(2*i-1)*(2*i-1)!!*Binomial[n,i]*(2n-1)^(n-i-1),{i,0,n}],{n,1,20}] (* Vaclav Kotesovec, Nov 30 2017 *)

Formula

a(2)=1, for n>=3, a(n) = A001499(n) + Sum_{k=1..n-2} (-1)^(k+1)*k!*(C(n,k))^2*(n-k)^k*a(n-k).
a(n) = n!*((n-1)/2^(n-1))*Sum_{i=0..n-2} (2i+1)!!*C(n-2,i)*(2n-1)^(n-i-2). [corrected by John Lentfer, Oct 05 2022]
For n>=2, a(n) = (n!/2^n)*Sum_{i=0..n} (2i-1)*(2i-1)!!*C(n,i)*(2n-1)^(n-i-1).
a(n) = Gamma(3/4)*(sqrt(2)*Pi*e)^(-1/2)*n!*n^(n-1/4)*(1+O(n^((-1/4)+epsilon) with arbitrary small epsilon>0 for sufficiently large n.