A001866 Number of connected graphs with n nodes and n edges.
0, 0, 1, 24, 936, 56640, 4968000, 598328640, 94916183040, 19200422062080, 4826695329792000, 1476585999504000000, 540272647694971699200, 233019960215154829516800, 117009251702203840384204800, 67680314823703303654732800000, 44677678066673631080900198400000
Offset: 0
Keywords
References
- V. S. Shevelev, On the permanent of the stochastic (0,1)-matrices with equal row sums, Izvestia Vuzov of the North-Caucasus region, Nature sciences 1 (1997), 21-38 (in Russian). - Vladimir Shevelev, Mar 25 2010
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..100
- T. L. Austin, R. E. Fagen, W. F. Penney, and John Riordan, The number of components in random linear graphs, Ann. Math. Statist 30 1959 747-754.
- J. Riordan, Letter to N. J. A. Sloane, Aug. 1970
Crossrefs
Cf. A174586.
Programs
-
Mathematica
Join[{0}, Table[(n!^2*n^(n - 1)/2)*Sum[n^(-k)/(n - k)!, {k, 2, n}], {n, 20}]] (* T. D. Noe, Aug 10 2012 *)
Formula
Explicit formula: a(n) = (n!^2*n^(n-1)/2)*Sum_{k=2..n} n^(-k)/(n-k)!; Recursion: a(2)=1, for n>=3, a(n) = n!*((n-1)!/2+Sum_{k=2..n-1} (-1)^(n+k+1)*k^(n-k)*binomial(n,k)*a(k)/k!). - Vladimir Shevelev, Mar 25 2010
a(n) ~ Pi * n^(2*n) / (2*exp(n)). - Vaclav Kotesovec, Nov 30 2017
Comments