cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174590 a(n) = (k-1)/lambda(k), the index of the n-th Carmichael number k.

Original entry on oeis.org

7, 23, 48, 22, 47, 5, 45, 21, 44, 163, 342, 162, 43, 31, 1777, 314, 337, 161, 1753, 70, 2868, 1745, 421, 2487, 1363, 159, 39, 645, 950, 67, 198, 1358, 949, 158, 2303, 134, 305, 1692, 1733, 5731, 2794, 7107, 1732, 345, 1689, 2654, 1671, 1829, 947, 1353, 1557
Offset: 1

Views

Author

Michel Lagneau, Mar 23 2010, Mar 31 2010

Keywords

Comments

The index of a Carmichael number k is i(k) = (k-1)/lambda(k).
Or, i(k) = (k-1)/lcm(p_1-1,p_2-1,...,p_j-1), where k = p_1*p_2*...*p_j. - Thomas Ordowski, Oct 15 2015
For composite k, lambda(k) divides k-1 iff k is a Carmichael number. - Thomas Ordowski, Oct 23 2015

Examples

			a(1)= 7 because A002997(1) = 561, and (561 - 1)/lambda(561) = 560/80 = 7.
		

Crossrefs

Cf. A002322 (the Carmichael lambda function), A002997, A011773, A306414.

Programs

  • Maple
    with(numtheory) : for n from 2 to 2000000 do: if type(n,prime)=false and issqrfree(n)=true then  x:=factorset(n):n1:=nops(x):ii:=0:for j from 1 to n1 do:if irem(n-1, x[j]-1)=0  then ii:=ii+1:else fi:od:if ii=n1 then z:=(n-1)/lambda(n):printf(`%d, `,z):else fi:fi:od:
  • Mathematica
    carNums = Select[Range[561, 3 10^6, 2], CompositeQ[#] && Mod[#, CarmichaelLambda[#]] == 1&];
    a[n_] := (carNums[[n]] - 1)/CarmichaelLambda[carNums[[n]]];
    Array[a, 60] (* Jean-François Alcover, Sep 05 2018 *)
  • PARI
    t(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1;
    for(n=1, 1e7, if(n%2 && !isprime(n) && t(n) && n>1, print1((n-1)/(lcm(znstar(n)[2])), ", "))) \\ Altug Alkan, Oct 15 2015

Formula

a(n) = (A002997(n) - 1) / lambda(A002997(n)).
a(n) = (A002997(n) - 1) / A306414(n). - Jianing Song, Dec 12 2021

Extensions

Edited by Michel Lagneau, Jul 31 2012
Further edits from N. J. A. Sloane, Oct 31 2015