A174633 Let H(p) = p*tau(p)/sigma(p). Numbers 2^(H(p) - 1)*(2^H(p) - 1) where H(p) is an integer (i.e., p in A001599).
1, 6, 28, 496, 2016, 496, 32640, 130816, 2096128, 523776, 8128, 536854528, 536854528, 134209536, 8589869056, 140737479966720, 140737479966720, 2199022206976, 33550336, 137438691328, 9007199187632128, 562949936644096
Offset: 1
Keywords
Examples
For p = 1, H(1) = 1 and n=1; for p=2, H(2) = 2*tau(2)/sigma(2) = 2*2/3 = 4/3 (not integer). For p = 6, H(6) = 6*tau(6)/sigma(6) = 6*4/12 = 2, n = 2^(2-1)*(2^2 - 1) = 2*3 = 6 (first perfect number). Other perfect numbers: 28 (for p=28), 496 (for p=140), 8128 (for p = 8128).
References
- T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, p. 4.
- S. Bezuszka, Perfect Numbers, (Booklet 3, Motivated Math. Project Activities) Boston College Press, Chestnut Hill MA 1980.
- J.M. De Koninck, A. Mercier, 1001 problèmes en théorie classique des nombres, Ellipses 2004, p. 73.
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..725
- C. K. Caldwell, Perfect number
- J. J. O'Connor and E. F. Robertson, Perfect Numbers
Crossrefs
Cf. A000396.
Programs
-
GAP
H:=[];; for p in [1..240000] do if IsInt(p*Tau(p)/Sigma(p)) then Add(H,p*Tau(p)/Sigma(p)); fi; od; a:=List(H,i->(2^(i-1))*(2^i-1)); # Muniru A Asiru, Nov 28 2018
-
Maple
for p from 1 to 10000000 do H := p*numtheory[tau](p)/numtheory[sigma](p) ; if type(H,'integer') then (2^(H-1))*(2^H-1) ; printf("%d,",%) ; end if; end do:
-
Mathematica
h[p_] := p*DivisorSigma[0,p]/DivisorSigma[1,p]; hp=Select[Table[h[p],{p,1,10^6}],IntegerQ]; (2^(hp-1))*(2^hp-1) (* Jean-François Alcover, Sep 13 2011 *)
Comments