A174635 Prime numbers that are not Ramanujan primes.
3, 5, 7, 13, 19, 23, 31, 37, 43, 53, 61, 73, 79, 83, 89, 103, 109, 113, 131, 137, 139, 157, 163, 173, 191, 193, 197, 199, 211, 223, 251, 257, 271, 277, 283, 293, 313, 317, 331, 337, 353, 359, 379, 383, 389, 397, 421, 443, 449, 457, 463, 467, 479, 499, 509, 521
Offset: 1
Keywords
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-201; Amer. Math. Monthly 116 (2009), 630-635. - _John W. Nicholson_, Jan 29 2012
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2 - _John W. Nicholson_, Jan 29 2012.
Crossrefs
Cf. A104272.
Programs
-
Mathematica
nn = 100; R = Table[0, {nn}]; s = 0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s < nn, R[[s + 1]] = k],{k, Prime[3 nn]} ]; R = R + 1; Complement[Prime[Range[PrimePi[Last[R]]]], R] (* Jean-François Alcover, Nov 05 2018, after T. D. Noe in A104272 *)
-
Perl
use ntheory ":all"; my @n = grep { !is_ramanujan_prime($) } @{primes(1e3)}; say "[@n]"; # _Dana Jacobsen, Jul 15 2016
-
Perl
use ntheory ":all"; my %r; $r{$} = 1 for @{ramanujan_primes(1e7)}; say for grep { !exists $r{$} } @{primes(1e7)}; # Dana Jacobsen, Jul 15 2016
Comments