A174640 A triangular sequence:t(n,m)=A033306(n,m)-A033306(n,0)+1.
1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 6, 10, 6, 1, 1, 24, 49, 49, 24, 1, 1, 110, 248, 298, 248, 110, 1, 1, 545, 1308, 1749, 1749, 1308, 545, 1, 1, 2877, 7229, 10421, 11611, 10421, 7229, 2877, 1, 1, 16114, 41998, 64114, 77134, 77134, 64114, 41998, 16114, 1, 1, 95496
Offset: 0
Examples
{1}, {1, 1}, {1, 1, 1}, {1, 2, 2, 1}, {1, 6, 10, 6, 1}, {1, 24, 49, 49, 24, 1}, {1, 110, 248, 298, 248, 110, 1}, {1, 545, 1308, 1749, 1749, 1308, 545, 1}, {1, 2877, 7229, 10421, 11611, 10421, 7229, 2877, 1}, {1, 16114, 41998, 64114, 77134, 77134, 64114, 41998, 16114, 1}, {1, 95496, 256626, 410226, 523476, 565434, 523476, 410226, 256626, 95496, 1}
References
- This notebook downloaded from https://mathworld.wolfram.com/notebooks/Combinatorics/BellNumber.nb.
- J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 80.
Crossrefs
Programs
-
Mathematica
b[0] := 1; b[n_] := b[n] = Total[Table[b[k]Binomial[n - 1, k], {k, 0, n - 1}]]; a = b /@ Range[0, 70]; t[n_, m_] := Binomial[n, m]*a[[m + 1]]*a[[n - m + 1]]; Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}]; Flatten[%]
Comments