A174641 Smallest prime that begins a run of n consecutive primes that are not Ramanujan primes.
3, 3, 3, 73, 191, 191, 509, 2539, 2539, 5279, 9901, 9901, 9901, 11593, 11593, 55343, 55343, 55343, 55343, 55343, 174929, 174929, 174929, 225977, 225977, 225977, 225977, 225977, 534889, 534889, 534889, 534889, 534889, 534889, 534889, 534889, 2492317, 2492317
Offset: 1
Keywords
Links
- Dana Jacobsen, Table of n, a(n) for n = 1..107 (first 67 terms from T. D. Noe)
- J. Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010.
- J. Sondow, Ramanujan primes and Bertrand's postulate, Amer. Math. Monthly, 116 (2009) 630-635.
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011.
- J. Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, J. Integer Seq. 14 (2011) Article 11.6.2.
Crossrefs
Programs
-
Mathematica
nn=10000; t=Table[0, {nn}]; len=Prime[3*nn]; s=0; Do[If[PrimeQ[k], s++]; If[PrimeQ[k/2], s--]; If[s
-
Perl
use ntheory ":all"; my($k, $max, $start, $end, $inc, $p, $q, $r, $pi) = (0, 0, 0, 10, 1e9, 0, 2, [], prime_iterator(3)); while (1) { if (!@$r) { ($start, $end) = ($end+1, $end+$inc); $r = ramanujan_primes($start, $end); } ($p, $q, $k) = ($q, shift(@$r), 0); # $k = prime_count($p+1,$q-1); $k++ while $pi->() < $q; say ++$max," ",next_prime($p) while $k > $max; } # Dana Jacobsen, Jul 14 2016
Comments