cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174646 Number of ways to place 7 nonattacking amazons (superqueens) on a 7 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 2, 100, 908, 4872, 19818, 66864, 193926, 498924, 1165544, 2517036, 5089430, 9731908, 17735888, 30999920, 52234274, 85210284, 135059570, 208627984, 314889330, 465423908, 674966914, 962031720, 1349613074
Offset: 1

Views

Author

Vaclav Kotesovec, Mar 25 2010

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[2 x^8 (8 x^22 - 4 x^21 - 9 x^20 + 102 x^18 - 138 x^17 + 29 x^16 + 592 x^15 - 1610 x^14 + 2772 x^13 - 3091 x^12 + 3178 x^11 - 2049 x^10 + 1312 x^9 - 625 x^8 + 1438 x^7 - 449 x^6 + 388 x^5 + 403 x^4 + 148 x^3 + 82 x^2 + 42 x + 1) / (x - 1)^8, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2013 *)

Formula

G.f.: 2*x^9 * (8*x^22 - 4*x^21 - 9*x^20 + 102*x^18 - 138*x^17 + 29*x^16 + 592*x^15 - 1610*x^14 + 2772*x^13 - 3091*x^12 + 3178*x^11 - 2049*x^10 + 1312*x^9 - 625*x^8 + 1438*x^7 - 449*x^6 + 388*x^5 + 403*x^4 + 148*x^3 + 82*x^2 + 42*x + 1)/(x-1)^8.
Explicit formula: a(n) = n^7 - 85n^6 + 3329n^5 - 77911n^4 + 1175240n^3 - 11392990n^2 + 65448630n -171006180, n>=24.

A178372 Number of ways to place 8 nonattacking amazons (superqueens) on an 8 X n board.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 32, 552, 4738, 27110, 119602, 437640, 1376504, 3835578, 9697416, 22605024, 49208658, 101004522, 197024206, 367556982, 659230078, 1141734758, 1916570390, 3128196492, 4978021504, 7741704218, 11790289180
Offset: 1

Views

Author

Vaclav Kotesovec, May 26 2010

Keywords

Comments

An amazon (superqueen) moves like a queen and a knight.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[- 2 x^9 (72 x^29 - 244 x^28 + 40 x^27 + 1379 x^26 - 3400 x^25 + 4619 x^24 - 6525 x^23 + 10407 x^22 - 8879 x^21 - 901 x^20 + 4213 x^19 + 10475 x^18 - 33273 x^17 + 60823 x^16 - 90147 x^15 + 109862 x^14 - 106589 x^13 + 92686 x^12 - 68408 x^11 + 45714 x^10 - 16426 x^9 + 999 x^8 + 9801 x^7 - 1850 x^6 + 2355 x^5 + 1922 x^4 + 826 x^3 + 461 x^2 + 132 x + 16) / (x - 1)^9, {x, 0, 50}], x] (* Vincenzo Librandi, May 31 2013 *)

Formula

For n >= 31, a(n) = n^8 -110*n^7 +5684*n^6 -180400*n^5 +3845495*n^4 -56292452*n^3 +551196090*n^2 -3289297810*n +9121996624.
G.f.: - 2*x^10*(72*x^29 - 244*x^28 + 40*x^27 + 1379*x^26 - 3400*x^25 + 4619*x^24 - 6525*x^23 + 10407*x^22 - 8879*x^21 - 901*x^20 + 4213*x^19 + 10475*x^18 - 33273*x^17 + 60823*x^16 - 90147*x^15 + 109862*x^14 - 106589*x^13 + 92686*x^12 - 68408*x^11 + 45714*x^10 - 16426*x^9 + 999*x^8 + 9801*x^7 - 1850*x^6 + 2355*x^5 + 1922*x^4 + 826*x^3 + 461*x^2 + 132*x + 16)/(x - 1)^9.
Showing 1-2 of 2 results.