cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174655 Partial sums of A049486.

Original entry on oeis.org

1, 5, 15, 36, 70, 123, 197, 298, 428, 593, 795, 1040, 1330, 1671, 2065, 2518, 3032, 3613, 4263, 4988, 5790, 6675, 7645, 8706, 9860, 11113, 12467, 13928, 15498, 17183, 18985, 20910, 22960, 25141, 27455, 29908, 32502, 35243, 38133, 41178, 44380
Offset: 1

Views

Author

Jonathan Vos Post, Mar 25 2010

Keywords

Comments

Partial sums of maximum length of non-crossing path on n X n square lattice. The subsequence of primes in this partial sum begins: 5, 197, 593, 3613, 11113, 17183.

Examples

			a(7) = 1 + 4 + 10 + 21 + 34 + 53 + 74 = 197 is prime.
		

Crossrefs

Programs

  • Mathematica
    Accumulate[Join[{1,4},LinearRecurrence[{2,0,-2,1},{10,21,34,53},40]]] (* or *) Join[{1,5},LinearRecurrence[{3,-2,-2,3,-1},{15,36,70,123,197},40]] (* Harvey P. Dale, Aug 21 2013 *)

Formula

a(n) = SUM[i=1..n] A049486(i).
Conjecture: a(n) = (3*(-9+(-1)^n)+34*n-12*n^2+8*n^3)/12 for n>1. G.f.: x*(x^5-x^4+3*x^3+2*x^2+2*x+1) / ((x-1)^4*(x+1)). - Colin Barker, May 02 2013