A174655 Partial sums of A049486.
1, 5, 15, 36, 70, 123, 197, 298, 428, 593, 795, 1040, 1330, 1671, 2065, 2518, 3032, 3613, 4263, 4988, 5790, 6675, 7645, 8706, 9860, 11113, 12467, 13928, 15498, 17183, 18985, 20910, 22960, 25141, 27455, 29908, 32502, 35243, 38133, 41178, 44380
Offset: 1
Keywords
Examples
a(7) = 1 + 4 + 10 + 21 + 34 + 53 + 74 = 197 is prime.
Links
- Index entries for linear recurrences with constant coefficients, signature (3, -2, -2, 3, -1).
Programs
-
Mathematica
Accumulate[Join[{1,4},LinearRecurrence[{2,0,-2,1},{10,21,34,53},40]]] (* or *) Join[{1,5},LinearRecurrence[{3,-2,-2,3,-1},{15,36,70,123,197},40]] (* Harvey P. Dale, Aug 21 2013 *)
Formula
a(n) = SUM[i=1..n] A049486(i).
Conjecture: a(n) = (3*(-9+(-1)^n)+34*n-12*n^2+8*n^3)/12 for n>1. G.f.: x*(x^5-x^4+3*x^3+2*x^2+2*x+1) / ((x-1)^4*(x+1)). - Colin Barker, May 02 2013
Comments