A174667 Sequence A154692 adjusted to leading one:t(n,m)=A154692(n,m)-A154692(n,0)+1.
1, 1, 1, 1, 12, 1, 1, 56, 56, 1, 1, 216, 336, 216, 1, 1, 776, 1526, 1526, 776, 1, 1, 2700, 6228, 7848, 6228, 2700, 1, 1, 9236, 24146, 35486, 35486, 24146, 9236, 1, 1, 31248, 90960, 150432, 174624, 150432, 90960, 31248, 1, 1, 104816, 336206, 614846, 796286
Offset: 0
Examples
{1}, {1, 1}, {1, 12, 1}, {1, 56, 56, 1}, {1, 216, 336, 216, 1}, {1, 776, 1526, 1526, 776, 1}, {1, 2700, 6228, 7848, 6228, 2700, 1}, {1, 9236, 24146, 35486, 35486, 24146, 9236, 1}, {1, 31248, 90960, 150432, 174624, 150432, 90960, 31248, 1}, {1, 104816, 336206, 614846, 796286, 796286, 614846, 336206, 104816, 1}, {1, 348948, 1224588, 2454168, 3478008, 3859032, 3478008, 2454168, 1224588, 348948, 1}
Crossrefs
A154692(n, m)
Programs
-
Mathematica
a = 2; b = 3; t[n_, m_] = (a^m*b^(n - m) + b^m*a^(n - m))*Binomial[n, m]; Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}]; Flatten[%]
Comments