cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174672 Sequence A154693 adjusted to leading one:t(n,m)=A154693(n,m)-A154693(n,0)+1.

Original entry on oeis.org

1, 1, 1, 1, 12, 1, 1, 58, 58, 1, 1, 244, 512, 244, 1, 1, 994, 3592, 3592, 994, 1, 1, 4016, 23756, 38592, 23756, 4016, 1, 1, 16174, 154420, 374728, 374728, 154420, 16174, 1, 1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1, 1, 260842, 6314368
Offset: 0

Views

Author

Roger L. Bagula, Mar 26 2010

Keywords

Comments

Row sums are:
1, 2, 14, 118, 1002, 9174, 94138, 1090646, 14172218, 204490006, 3245253882,...

Examples

			{1},
{1, 1},
{1, 12, 1},
{1, 58, 58, 1},
{1, 244, 512, 244, 1},
{1, 994, 3592, 3592, 994, 1},
{1, 4016, 23756, 38592, 23756, 4016, 1},
{1, 16174, 154420, 374728, 374728, 154420, 16174, 1},
{1, 65004, 993088, 3529104, 4997824, 3529104, 993088, 65004, 1},
{1, 260842, 6314368, 32773312, 62896480, 62896480, 32773312, 6314368, 260842, 1},
{1, 1045480, 39684596, 299673344, 779048096, 1006350848, 779048096, 299673344, 39684596, 1045480, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[t, p, q, n, m];
    p = 2; q = 1;
    t[n_, m_] = (p^(n - m)*q^m + p^m*q^( n - m))*Sum[(-1)^j*Binomial[n + 2, j]*(m - j + 1)^(n + 1), {j, 0, m + 1}];
    Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}];
    Flatten[%]

Formula

t(n,m)=A154693(n,m)-A154693(n,0)+1