A174674 Sequence A154695 adjusted to leading one:t(n,m)=A154695(n,m)-A154695(n,0)+1.
1, 1, 1, 1, 20, 1, 1, 130, 130, 1, 1, 744, 1824, 744, 1, 1, 4234, 20152, 20152, 4234, 1, 1, 24484, 210796, 376704, 210796, 24484, 1, 1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1, 1, 851504, 22549360, 99411264, 149600192, 99411264
Offset: 0
Examples
{1}, {1, 1}, {1, 20, 1}, {1, 130, 130, 1}, {1, 744, 1824, 744, 1}, {1, 4234, 20152, 20152, 4234, 1}, {1, 24484, 210796, 376704, 210796, 24484, 1}, {1, 143686, 2183524, 6233224, 6233224, 2183524, 143686, 1}, {1, 851504, 22549360, 99411264, 149600192, 99411264, 22549360, 851504, 1}, {1, 5075122, 231836368, 1562973472, 3331837600, 3331837600, 1562973472, 231836368, 5075122, 1}, {1, 30344508, 2370195636, 24248921920, 72553861536, 97733916928, 72553861536, 24248921920, 2370195636, 30344508, 1}
Programs
-
Mathematica
Clear[t, p, q, n, m, a]; p[x_, n_] = 2^n*(1 - x)^(n + 1)*LerchPhi[x, -n, 1/2]; a = Table[CoefficientList[FullSimplify[ExpandAll[p[x, n]]], x], {n, 0, 10}]; p = 2; q = 1; t[n_, m_] := (p^(n - m)*q^m + p^m*q^(n - m))*a[[n + 1]][[m + 1]]; Table[Table[t[n, m] - t[n, 0] + 1, {m, 0, n}], {n, 0, 10}]; Flatten[%]
Comments