cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174688 All different products of not necessarily distinct terms of A001317.

Original entry on oeis.org

1, 3, 5, 9, 15, 17, 25, 27, 45, 51, 75, 81, 85, 125, 135, 153, 225, 243, 255, 257, 289, 375, 405, 425, 459, 625, 675, 729, 765, 771, 867, 1125, 1215, 1275, 1285, 1377, 1445, 1875, 2025, 2125, 2187, 2295, 2313, 2601, 3125, 3375, 3645, 3825, 3855, 4131, 4335, 4369
Offset: 1

Views

Author

Vladimir Shevelev, Dec 01 2010

Keywords

Comments

Sequence differs from A143512 beginning with a(970).

Examples

			9 = 3^2 is a term since 3 is in A001317.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := FromDigits[Table[Mod[Binomial[n, k], 2], {k, 0, n}], 2]; n = 13; v = Array[f, n, 0]; vmax = v[[-1]]; s = {1}; Do[v1 = v[[k]]; rmax = Floor[Log[v1, vmax]]; s1 = v1^Range[0, rmax]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= vmax &]; s = Union[s, s2], {k, 2, n}]; s (* Amiram Eldar, Sep 27 2020 *)

Formula

Sum_{n>=1} 1/a(n) = 2.
Let m_a(n) = (-1)^A010060(n), if n is squarefree, and 0, otherwise (a-analog of Möbius function). Then Sum_{n>=1} m_a(n)/a(n) = 1/2.
A generalization: Sum_{n>=1} 1/(a(n))^s = Product_{Fermat numbers F} (1-F^(-s))^(-1), where s>0 (an analog of Euler identity for primes, where, for real s, s>1).

Extensions

Offset corrected and more terms added by Amiram Eldar, Sep 27 2020