A174694 Triangle T(n, k) = n!*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - n! + 1, read by rows.
1, 1, 1, 1, 13, 1, 1, 121, 121, 1, 1, 1081, 2281, 1081, 1, 1, 10081, 35281, 35281, 10081, 1, 1, 100801, 524161, 876961, 524161, 100801, 1, 1, 1088641, 7862401, 19716481, 19716481, 7862401, 1088641, 1, 1, 12700801, 121564801, 426384001, 639757441, 426384001, 121564801, 12700801, 1
Offset: 1
Examples
Triangle begin as: 1; 1, 1; 1, 13, 1; 1, 121, 121, 1; 1, 1081, 2281, 1081, 1; 1, 10081, 35281, 35281, 10081, 1; 1, 100801, 524161, 876961, 524161, 100801, 1; 1, 1088641, 7862401, 19716481, 19716481, 7862401, 1088641, 1; 1, 12700801, 121564801, 426384001, 639757441, 426384001, 121564801, 12700801, 1;
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Programs
-
Magma
A174694:= func< n, k | (Factorial(n)/k)*Binomial(n-1, k-1)*Binomial(n, k-1) - Factorial(n) + 1 >; [A174694(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 09 2021
-
Mathematica
T[n_, k_]:= n!*(1/k)*Binomial[n-1, k-1]*Binomial[n, k-1] - n! + 1; Table[T[n, k], {n,12}, {k,n}]//Flatten
-
Sage
def A174694(n, k): return (factorial(n)/k)*binomial(n-1, k-1)*binomial(n, k-1) - factorial(n) + 1 flatten([[A174694(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 09 2021
Formula
T(n, k) = n!*(1/k)*binomial(n-1, k-1)*binomial(n, k-1) - n! + 1.
From G. C. Greubel, Feb 09 2021: (Start)
T(n, k) = (-1)^n * k! * A176013(n, k) - n! + 1.
Sum_{k=1..n} T(n,k) = n! * (C_{n} - n) + n, where C_{n} are the Catalan numbers (A000108). (End)
Extensions
Edited by G. C. Greubel, Feb 09 2021