A174696 Triangle T(n, k) = n!*(1/k)^2*(binomial(n-1, k-1)*binomial(n, k-1))^2 - n! + 1, read by rows.
1, 1, 1, 1, 49, 1, 1, 841, 841, 1, 1, 11881, 47881, 11881, 1, 1, 161281, 1799281, 1799281, 161281, 1, 1, 2217601, 55560961, 154344961, 55560961, 2217601, 1, 1, 31570561, 1548892801, 9680791681, 9680791681, 1548892801, 31570561, 1, 1, 469929601, 40967337601, 501853968001, 1129171881601, 501853968001, 40967337601, 469929601, 1
Offset: 1
Examples
Triangle begins as: 1; 1, 1; 1, 49, 1; 1, 841, 841, 1; 1, 11881, 47881, 11881, 1; 1, 161281, 1799281, 1799281, 161281, 1; 1, 2217601, 55560961, 154344961, 55560961, 2217601, 1; 1, 31570561, 1548892801, 9680791681, 9680791681, 1548892801, 31570561, 1;
Links
- G. C. Greubel, Rows n = 1..100 of the triangle, flattened
Programs
-
Magma
A174696:= func< n, k | (Factorial(n)/k^2)*(Binomial(n-1, k-1)*Binomial(n, k-1))^2 - Factorial(n) + 1 >; [A174696(n, k): k in [1..n], n in [1..12]]; // G. C. Greubel, Feb 09 2021
-
Mathematica
T[n_, m_]:= n!*(1/k)^2*(Binomial[n-1, k-1]*Binomial[n, k-1])^2 - n! + 1; Table[T[n, k], {n,12}, {k,n}]//Flatten
-
Sage
def A174696(n, k): return (factorial(n)/k^2)*(binomial(n-1, k-1)*binomial(n, k-1))^2 - factorial(n) + 1 flatten([[A174696(n, k) for k in (1..n)] for n in (1..12)]) # G. C. Greubel, Feb 09 2021
Formula
T(n, k) = n!*(1/k)^2*(binomial(n-1, k-1)*binomial(n, k-1))^2 - n! + 1.
From G. C. Greubel, Feb 09 2021: (Start)
T(n, k) = n! * A174158(n, k) - n! + 1.
Sum_{k=1..n} T(n,k) = n! * Hypergeometric4F3([-n, -n, 1-n, 1-n], [1, 2, 2], 1) - n*(n! - 1) = n! * A319743(n) - n*(n! - 1). (End)
Extensions
Edited by G. C. Greubel, Feb 09 2021