cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174703 The number of permutations p of {1,...,n} such that |p(i)-p(i+1)| is in {2,3} for all i from 1 to n-1.

Original entry on oeis.org

1, 0, 0, 2, 10, 12, 8, 12, 30, 72, 106, 128, 186, 316, 546, 836, 1186, 1756, 2720, 4224, 6366, 9374, 13932, 20958, 31470, 46820, 69194, 102458, 152152, 225548, 333142, 490964, 723690, 1067166, 1571878, 2311500, 3395804, 4987584, 7324024, 10747556
Offset: 1

Views

Author

W. Edwin Clark, Mar 27 2010

Keywords

Comments

For n>1, a(n)/2 is the number of Hamiltonian paths on the graph with vertex set {1,...,n} where i is adjacent to j iff |i-j| is in {2,3}.

Examples

			For n = 4 the a(4) = 2 permutations are (2,4,1,3), (3,1,4,2).
		

Crossrefs

Programs

  • Maple
    f:= proc(m, M, n) option remember; local i, l, p, cnt; l:= array ([i$i=1..n]); cnt:=0; p:= proc(t) local d, j, h; if t=n then d:= `if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then cnt:= cnt+1 fi else for j from t to n do l[t],l[j]:= l[j],l[t]; d:= `if`(t=1, m, abs(l[t]-l[t-1])); if m<=d and d<=M then p(t+1) fi od; h:= l[t]; for j from t to n-1 do l[j]:= l[j+1] od; l[n]:= h fi end; p(1); cnt end: a:= n-> f(2,3,n): seq(a(n), n=1..14); # Alois P. Heinz, Mar 27 2010
  • Mathematica
    f[m_, M_, n_] := f[m, M, n] = Module[{i, l, p, cnt}, Do[l[i] = i, {i, 1, n}]; cnt = 0; p[t_] := Module[{d, j, h}, If[t == n, d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, cnt = cnt+1], For[j = t, j <= n, j++, {l[t], l[j]} = {l[j], l[t]}; d = If[t == 1, m, Abs[l[t] - l[t-1]]]; If [m <= d && d <= M, p[t+1]]]; h = l[t]; For[j = t, j <= n-1, j++, l[j] = l[j+1]]; l[n] = h]]; p[1]; cnt]; a[n_] := f[2, 3, n]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 1, 14}] (* Jean-François Alcover, Jun 01 2015, after Alois P. Heinz *)

Formula

Empirical: a(n) = 2*a(n-1) -a(n-2) +a(n-3) -a(n-4) +4*a(n-5) -6*a(n-6) +a(n-7) -2*a(n-8) +a(n-9) -5*a(n-10) +5*a(n-11) +a(n-12) +3*a(n-13) +a(n-14) +3*a(n-15) -a(n-16) -a(n-18) -a(n-19) -a(n-20) for n>20. - Andrew Howroyd, Apr 08 2016
Empirical G.f.: (3-2*x) + 2*(1-x) * (-1 +2*x -x^2 +x^3 +8*x^5 -5*x^6 -2*x^7 -5*x^8 -6*x^10 +3*x^11 +x^12 +3*x^13 +4*x^14 +7*x^15 +5*x^16 +3*x^17 +x^18) / ((1 -x +x^2)^2 * (-1 +x^2 +x^3)^2 * (1 -x^3 -x^4 -3*x^5 -x^6 +x^8 +x^9 +x^10)). - Andrew Howroyd, Apr 08 2016

Extensions

More terms from Alois P. Heinz, Mar 30 2010