A174718 Triangle T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q = 2, read by rows.
1, 1, 1, 1, -2, 1, 1, -13, -13, 1, 1, -44, -74, -44, 1, 1, -123, -278, -278, -123, 1, 1, -314, -881, -1196, -881, -314, 1, 1, -761, -2539, -4317, -4317, -2539, -761, 1, 1, -1784, -6884, -14024, -17594, -14024, -6884, -1784, 1, 1, -4087, -17884, -42412, -63874, -63874, -42412, -17884, -4087, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -2, 1; 1, -13, -13, 1; 1, -44, -74, -44, 1; 1, -123, -278, -278, -123, 1; 1, -314, -881, -1196, -881, -314, 1; 1, -761, -2539, -4317, -4317, -2539, -761, 1; 1, -1784, -6884, -14024, -17594, -14024, -6884, -1784, 1; 1, -4087, -17884, -42412, -63874, -63874, -42412, -17884, -4087, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
T:= func< n,k,q | 1 + (1-q^n)*(Binomial(n,k) -1) >; [T(n,k,2): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 09 2021
-
Mathematica
T[n_, k_, q_]:= 1 +(1-q^n)*(Binomial[n, k] -1); Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten
-
Sage
def T(n,k,q): return 1 + (1-q^n)*(binomial(n,k) - 1) flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 09 2021
Formula
T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q=2.
Sum_{k=0..n} T(n, k, 2) = 2^n *(n + 2 - 2^n) = A001787(n+1) - A020522(n). - G. C. Greubel, Feb 09 2021
Extensions
Edited by G. C. Greubel, Feb 09 2021
Comments