A174720 Triangle T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q = 4, read by rows.
1, 1, 1, 1, -14, 1, 1, -125, -125, 1, 1, -764, -1274, -764, 1, 1, -4091, -9206, -9206, -4091, 1, 1, -20474, -57329, -77804, -57329, -20474, 1, 1, -98297, -327659, -557021, -557021, -327659, -98297, 1, 1, -458744, -1769444, -3604424, -4521914, -3604424, -1769444, -458744, 1
Offset: 0
Examples
Triangle begins as: 1; 1, 1; 1, -14, 1; 1, -125, -125, 1; 1, -764, -1274, -764, 1; 1, -4091, -9206, -9206, -4091, 1; 1, -20474, -57329, -77804, -57329, -20474, 1; 1, -98297, -327659, -557021, -557021, -327659, -98297, 1; 1, -458744, -1769444, -3604424, -4521914, -3604424, -1769444, -458744, 1;
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
T:= func< n,k,q | 1 + (1-q^n)*(Binomial(n,k) -1) >; [T(n,k,4): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 09 2021
-
Mathematica
T[n_, k_, q_]:= 1 +(1-q^n)*(Binomial[n, k] -1); Table[T[n,k,4], {n,0,12}, {k,0,n}]//Flatten
-
Sage
def T(n,k,q): return 1 + (1-q^n)*(binomial(n,k) - 1) flatten([[T(n,k,4) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 09 2021
Formula
T(n, k, q) = (1-q^n)*( binomial(n, k) - 1 ) + 1, with q=4.
Sum_{k=0..n} T(n, k, 4) = 4^n*(n+1) + 2^n*(1 - 4^n) = A002697(n+1) - A248217(n). - G. C. Greubel, Feb 09 2021
Extensions
Edited by G. C. Greubel, Feb 09 2021
Comments