cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174728 Triangle read by rows: T(n, m, q) = (1-q^n)*Eulerian(n+1, m) - (1-q^n) + 1, with q = 2.

Original entry on oeis.org

1, 1, 1, 1, -8, 1, 1, -69, -69, 1, 1, -374, -974, -374, 1, 1, -1735, -9330, -9330, -1735, 1, 1, -7496, -74969, -152144, -74969, -7496, 1, 1, -31241, -545083, -1983485, -1983485, -545083, -31241, 1, 1, -127754, -3724784, -22499414, -39828194, -22499414, -3724784, -127754, 1
Offset: 0

Views

Author

Roger L. Bagula, Mar 28 2010

Keywords

Comments

Row sums are: {1, 2, -6, -136, -1720, -22128, -317072, -5119616, -92532096, -1854311680, -40834875136, ...}.

Examples

			Triangle begins as:
  1;
  1,      1;
  1,     -8,       1;
  1,    -69,     -69,        1;
  1,   -374,    -974,     -374,        1;
  1,  -1735,   -9330,    -9330,    -1735,       1;
  1,  -7496,  -74969,  -152144,   -74969,   -7496,      1;
  1, -31241, -545083, -1983485, -1983485, -545083, -31241,  1;
		

Programs

  • Magma
    q:=2; Eulerian:= func< n,k | (&+[(-1)^j*Binomial(n+1,j)*(k-j+1)^n: j in [0..k+1]]) >; [[(1-q^n)*(Eulerian(n+1,k)-1) +1: k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 20 2019
    
  • Mathematica
    Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j,0,k+1}];
    With[{q = 2}, Table[(1-q^n)*(Eulerian[n+1, m]-1)+1, {n,0,10}, {m,0, n}] ]//Flatten (* G. C. Greubel, Apr 20 2019 *)
  • PARI
    q=2; {eulerian(n,k) = sum(j=0,k+1, (-1)^j*binomial(n+1,j)*(k-j+1)^n)};
    for(n=0,10, for(k=0,n, print1((1-q^n)*(eulerian(n+1,k)-1)+1, ", "))) \\ G. C. Greubel, Apr 20 2019
    
  • Sage
    q=2;
    def Eulerian(n,k): return sum((-1)^j*binomial(n+1,j)*(k-j+1)^n for j in (0..k+1))
    [[(1-q^n)*(Eulerian(n+1,k)-1)+1 for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 20 2019

Formula

T(n, m, q) = (1 - q^n)*Eulerian(n + 1, m) - (1 - q^n) + 1, where q = 2.

Extensions

Edited by G. C. Greubel, Apr 20 2019