cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174783 Expansion of (1+2x-sqrt(1-4x^2))/(2(1-x^2)*sqrt(1-4x^2)).

Original entry on oeis.org

0, 1, 1, 3, 4, 9, 14, 29, 49, 99, 175, 351, 637, 1275, 2353, 4707, 8788, 17577, 33098, 66197, 125476, 250953, 478192, 956385, 1830270, 3660541, 7030570, 14061141, 27088870, 54177741, 104647630
Offset: 0

Views

Author

Paul Barry, Mar 29 2010

Keywords

Comments

Hankel transform is A174784. Hankel transform of a(n+1) is A174785.
Transform of the sequence 0,1,1,1,1,0,0,1,1,1,1,0,0,1,.. by the Riordan array (c(x^2),xc(x^2)), c(x) the g.f. of A000108.

Crossrefs

Essentially partial sums of A086905.

Programs

  • Mathematica
    CoefficientList[Series[(1 + 2 x - Sqrt[1 - 4 x^2])/(2 (1 - x^2) Sqrt[1 - 4 x^2]), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 04 2014 *)
  • Maxima
    a(n):=sum((binomial(n-2*i+1,floor((n-2*i+1)/2))),i,1,(n+1)/2); /* - Vladimir Kruchinin, Mar 15 2016 */

Formula

E.g.f.: int(cosh(x-t)*(Bessel_I(0,2t)+Bessel_I(1,2t)),t,0,x).
Conjecture: n*a(n) -2*a(n-1) +(8-5*n)*a(n-2) +2*a(n-3) +4*(n-2)*a(n-4)=0. - R. J. Mathar, Nov 13 2012
a(n) ~ 2^(n+3/2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Feb 04 2014
a(n) = Sum_{i=1..(n+1)/2}((binomial(n-2*i+1,floor((n-2*i+1)/2)))). - Vladimir Kruchinin, Mar 15 2016