cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A191394 Number of base pyramids in all dispersed Dyck paths of length n (i.e., in all Motzkin paths of length n with no (1,0)-steps at positive heights).

Original entry on oeis.org

0, 0, 1, 2, 6, 12, 28, 56, 121, 242, 507, 1014, 2093, 4186, 8569, 17138, 34902, 69804, 141664, 283328, 573574, 1147148, 2318010, 4636020, 9354540, 18709080, 37708672, 75417344, 151868100, 303736200, 611180252, 1222360504, 2458123705, 4916247410, 9881255187
Offset: 0

Views

Author

Emeric Deutsch, Jun 04 2011

Keywords

Comments

A base pyramid is a factor of the form U^j D^j (j>0), starting at the horizontal axis. Here U=(1,1) and D=(1,-1).

Examples

			a(4) = 6 because in HHHH, HH(UD), H(UD)H, (UD)HH, (UD)(UD), and (UUDD) we have a total of 0+1+1+1+2+1 = 6 base pyramids (shown between parentheses).
		

Crossrefs

Programs

  • Maple
    G := 4*z^2/((1-z^2)*(1-2*z+sqrt(1-4*z^2))^2): Gser := series(G, z = 0, 38): seq(coeff(Gser, z, n), n = 0 .. 34);
  • Mathematica
    CoefficientList[Series[(4x^2)/((1-x^2)(1-2x+Sqrt[1-4x^2])^2), {x,0,40}], x] (* Harvey P. Dale, Jun 19 2011 *)
  • Maxima
    a(n):=ceiling(2*(2^n-1)/3)-sum((binomial(n-2*i+1,floor((n-2*i+1)/2))),i,1,(n+1)/2); /* Vladimir Kruchinin, Mar 15 2016 */
    
  • PARI
    x='x+O('x^50); concat([0,0], Vec(4*x^2/((1-x^2)*(1-2*x+sqrt(1-4*x^2))^2))) \\ G. C. Greubel, Mar 26 2017

Formula

a(n) = Sum_{k=0..(1 + ceiling(n/2))} k*A191392(n, k), formula clarified by G. C. Greubel.
G.f.: 4*x^2/((1-x^2)*(1-2*x+sqrt(1-4*x^2))^2).
a(n) ~ 2^(n+1)/3 * (1-sqrt(2)/sqrt(Pi*n)). - Vaclav Kotesovec, Mar 21 2014
a(n) = ceiling(2*(2^n-1)/3) - Sum_{i=1..(n+1)/2} binomial(n-2*i+1, floor((n-2*i+1)/2)) = A000975(n) - A174783(n). - Vladimir Kruchinin, Mar 15 2016
D-finite with recurrence n*a(n) -2*n*a(n-1) +(-5*n+12)*a(n-2) +2*(5*n-12)*a(n-3) +4*(n-3)*a(n-4) +8*(-n+3)*a(n-5)=0. - R. J. Mathar, Jun 14 2016

A174784 Expansion of x*(1-x+x^3+x^4)/(1+x^6) (Period 12).

Original entry on oeis.org

0, 1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0, -1, 1, 0, -1, -1, 0, 1, -1, 0, 1, 1, 0
Offset: 0

Views

Author

Paul Barry, Mar 29 2010

Keywords

Comments

Hankel transform of A174783 is -a(n).

Programs

  • Mathematica
    LinearRecurrence[{0,0,0,0,0,-1},{0,1,-1,0,1,1},100] (* or *) PadRight[ {},120,{0,1,-1,0,1,1,0,-1,1,0,-1,-1}] (* Harvey P. Dale, Feb 25 2017 *)

Formula

a(n) = -cos(5*Pi*n/6)/3 + sin(5*Pi*n/6)/3 - cos(Pi*n/6)/3 + sin(Pi*n/6)/3 + 2*cos(Pi*n/2)/3 + 2*sin(Pi*n/2)/3.
G.f.: x*(1-x+x^3+x^4) / ( (1+x^2)*(x^4-x^2+1) ). - R. J. Mathar, Feb 10 2015

A174785 Expansion of g.f. (1+2*x-x^2+x^3-x^4-x^5)/(1+x^3)^2.

Original entry on oeis.org

1, 2, -1, -1, -5, 1, 1, 8, -1, -1, -11, 1, 1, 14, -1, -1, -17, 1, 1, 20, -1, -1, -23, 1, 1, 26, -1, -1, -29, 1, 1, 32, -1, -1, -35, 1, 1, 38, -1, -1, -41, 1, 1, 44, -1, -1, -47, 1, 1, 50, -1, -1, -53, 1, 1, 56, -1, -1, -59, 1, 1, 62, -1, -1, -65, 1, 1, 68, -1, -1
Offset: 0

Views

Author

Paul Barry, Mar 29 2010

Keywords

Comments

Hankel transform of A174783.

Crossrefs

Cf. A174783.

Programs

  • Mathematica
    CoefficientList[Series[(1+2x-x^2+x^3-x^4-x^5)/(1+x^3)^2,{x,0,50}],x] (* or *) LinearRecurrence[{0,0,-2,0,0,-1},{1,2,-1,-1,-5,1},60] (* Harvey P. Dale, May 11 2019 *)

Formula

a(n) = (n+4)*cos(pi*n/3)/3 + n*sin(pi*n/3)/sqrt(3) - (n+1)*(-1)^n/3.
E.g.f.: exp(-x)*(2*exp(3*x/2)*(2 + x)*cos(sqrt(3)*x/2) + x - 1)/3. - Stefano Spezia, May 29 2024

Extensions

a(51)-a(69) from Stefano Spezia, May 29 2024
Showing 1-3 of 3 results.