cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174796 Number of admissible sequences of order j; related to 7x+1 problem.

Original entry on oeis.org

1, 2, 7, 30, 143, 728, 3148, 15986, 86009, 478907, 2731365, 13131703, 72135374, 412835191, 2416852480, 14369476066, 72067537808, 409636973141, 2412844770335, 14479410843183, 87964452906330, 451313038006432
Offset: 1

Views

Author

T.M.M. Laarhoven (t.laarhoven(AT)gmail.com), Mar 29 2010

Keywords

Examples

			The unique admissible sequence of order 1 is 7/2, 1/2, 1/2.
The two admissible sequences of order 2 are 7/2, 7/2, 1/2, 1/2, 1/2, 1/2 and 7/2, 1/2, 7/2, 1/2, 1/2, 1/2.
		

Crossrefs

Similar to A100982 and A174795, but for the 7x+1 problem.

Programs

  • Mathematica
    h[n_] := Module[{L = {{1}}}, For[i = 1, i <= n, i++, K = {}; S = 0; j = 1; While[7^i >= 2^(i + j - 1), If[7^(i - 1) >= 2^(i + j - 2), S = S + L[[i, j]]]; AppendTo[K, S]; j = j + 1]; AppendTo[L, K]; ]; Return[Map[Last, Drop[L, 1]]]]
  • PARI
    n=20; a=vector(n); log72=log(7)/log(2);
    {a[1]=1; for ( k=1, n-1, a[k+1]=sum( m=1,k,(-1)^(m-1)*binomial( floor( (k-m+1)*log72)+m-1,m)*a[k-m+1] ); print1(a[k], ", ") );} \\ Vladimir M. Zarubin, Sep 25 2015

Formula

A sequence s(k), where k=1, 2, ..., n, is *admissible* if it satisfies s(k)=7/2 exactly j times, s(k)=1/2 exactly n-j times, s(1)*s(2)*...*s(n) < 1 but s(1)*s(2)*...*s(m) > 1 for all 1 < m < n.
a(1) = 1 and a(k) = Sum_{m=1..k-1} (-1)^(m-1)*binomial(floor((k-m)*(log(7)/log(2)))+m-1, m)*a(k-m) for k >= 2. - Vladimir M. Zarubin, Sep 25 2015

A270968 Reduced 5x+1 function R applied to the odd integers: a(n) = R(2n-1), where R(k) = (5k+1)/2^r, with r as large as possible.

Original entry on oeis.org

3, 1, 13, 9, 23, 7, 33, 19, 43, 3, 53, 29, 63, 17, 73, 39, 83, 11, 93, 49, 103, 27, 113, 59, 123, 1, 133, 69, 143, 37, 153, 79, 163, 21, 173, 89, 183, 47, 193, 99, 203, 13, 213, 109, 223, 57, 233, 119, 243, 31, 253, 129, 263, 67, 273, 139, 283, 9, 293, 149, 303
Offset: 1

Views

Author

Michel Lagneau, Mar 27 2016

Keywords

Comments

The odd-indexed terms a(2i+1) = 10i+3 = A017305(i), i>=0;
a(4i+4) = 10i+9 = A017377(i), i>=0;
a(8i+6) = 10i+7 = A017353(i), i>=0;
a(16i+2) = 10i+1 = A017281(i), i>=0.
Note that a(n) = a(16n-6) = a(6n-2)/3. No multiple of 5 is in this sequence.
a(n) = R(2n-1) < 2n-1 for n = 2, 6, 10, ..., 2+4i,...

Examples

			a(4)=9 because (2*4-1) = 7  -> (5*7+1)/2^2 = 9.
		

Crossrefs

Programs

  • Mathematica
    nextOddK[n_] := Module[{m=5n+1}, While[EvenQ[m], m=m/2]; m]; (* assumes odd n *) Table[nextOddK[n], {n, 1, 200, 2}]
  • PARI
    a(n) = my(m = 2*n-1, c = 5*m+1); c/2^valuation(c, 2); \\ Michel Marcus, Mar 27 2016

Formula

a(n) = A000265(A017341(n-1)). - Michel Marcus, Mar 27 2016
Showing 1-2 of 2 results.