A174840 Least k such that the primes 3 to prime(k+1) form a complete residue system (mod prime(n)).
3, 7, 9, 13, 26, 26, 42, 32, 65, 63, 84, 74, 89, 162, 110, 126, 177, 169, 144, 171, 214, 196, 237, 238, 323, 297, 363, 344, 327, 515, 441, 543, 420, 481, 612, 494, 604, 543, 646, 552, 645, 644, 519, 742, 593, 737, 644, 851, 1012, 787, 1204, 727, 899, 800, 1046
Offset: 1
Keywords
Programs
-
Mathematica
Table[p=Prime[n]; k=1; While[u=Union[Mod[Prime[Range[2,k]], p]]; u != Range[0,p-1], k++ ]; k-1, {n,2,100}] (* T. D. Noe, Apr 02 2010 *)
Comments