cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174897 a(n) = characteristic function of numbers k such that A007955(m) = k has solution for some m, where A007955(m) = product of divisors of m.

Original entry on oeis.org

1, 1, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0
Offset: 1

Views

Author

Jaroslav Krizek, Apr 01 2010

Keywords

Comments

a(n) = characteristic function of numbers from A174895(n).
a(n) = 1 if A007955(m) = n for any m, else 0.

Crossrefs

Programs

  • Mathematica
    Block[{nn = 105, t}, t = ConstantArray[0, nn]; ReplacePart[t, Map[# -> 1 &, TakeWhile[Sort@ Array[Times @@ Divisors@ # &, nn], # <= 105 &]]]] (* Michael De Vlieger, Oct 20 2017 *)
  • PARI
    up_to = 65537;
    v174897 = vector(up_to);
    A007955(n) = if(issquare(n, &n), n^numdiv(n^2), n^(numdiv(n)/2)); \\ This function from Charles R Greathouse IV, Feb 11 2011
    for(k=1, up_to, t=A007955(k); if(t<=up_to, v174897[t] = 1));
    write_to_bfile(start_offset,vec,bfilename) = { for(n=1, length(vec), write(bfilename, (n+start_offset)-1, " ", vec[n])); }
    write_to_bfile(1,v174897,"b174897_upto65537.txt");
    \\ Antti Karttunen, Oct 20 2017

Formula

a(n) = 1 - A174898(n).

Extensions

Name edited and more terms added by Antti Karttunen, Oct 20 2017