A174903
Number of divisors d of n such that d
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 3, 0, 0, 1, 0, 0, 2, 0, 1, 0, 0, 0, 5, 0, 0, 0, 1, 0, 5, 0, 0, 0, 0, 1, 6, 0, 0, 0, 3, 0, 3, 0, 0, 3, 0, 0, 7, 0, 0, 0, 0, 0, 3, 0, 3, 0, 0, 0, 9, 0, 0, 1, 0, 0, 3, 0, 0, 0, 3, 0, 9, 0, 0, 2, 0, 1, 2, 0, 5, 0, 0, 0, 9, 0, 0, 0, 1, 0, 9, 1, 0, 0, 0, 0, 9, 0, 0, 1, 2, 0, 2, 0, 1, 4
Offset: 1
Keywords
Examples
a(12) = #{(2,3), (3,4), (4,6)} = 3; a(15) = #{(3,5)} = 1; a(18) = #{(2,3), (6,9)} = 2; a(20) = #{(4,5)} = 1; a(24) = #{(2,3), (3,4), (4,6), (6,8), (8,12)} = 5.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
import Data.List (intersect) a174903 n = length [d | let ds = a027750_row n, d <- ds, not $ null [e | e <- [d+1 .. 2*d-1] `intersect` ds]] -- Reinhard Zumkeller, Sep 29 2014
-
Mathematica
a[n_] := Module[{d = Divisors[n]}, Count[d, ?(Length[Intersection[Range[# + 1, 2*# - 1], d]] > 0 &)]]; Array[a, 100] (* _Amiram Eldar, Apr 13 2024 *)