A174917 Lesser of twin primes p1 such that p2+(p2^2-p1^2) is a prime number.
5, 11, 29, 41, 107, 137, 149, 197, 239, 347, 431, 461, 569, 599, 659, 809, 821, 1019, 1229, 1289, 1481, 1619, 1787, 1877, 1931, 2027, 2129, 2141, 2309, 2339, 2657, 2687, 2801, 2969, 3119, 3329, 3467, 3557, 3581, 4001, 4019, 4127, 4241, 4421, 4547, 4649
Offset: 1
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
lst={};Do[p1=Prime[n];p2=p1+2;If[PrimeQ[p2]&&PrimeQ[p2+(p2^2-p1^2)],AppendTo[lst,p1]],{n,4*6!}];lst Select[Partition[Prime[Range[700]],2,1],#[[2]]-#[[1]]==2&& PrimeQ[ #[[2]]+ #[[2]]^2-#[[1]]^2]&][[All,1]] (* Harvey P. Dale, Dec 18 2021 *)
Comments