A174926 Smallest prime which has a decimal representation which shows n^2 embedded in otherwise only decimal square digits 0, 1, 4 and 9.
101, 11, 41, 19, 1601, 251, 1361, 149, 641, 811, 1009, 12101, 14401, 1699, 11969, 2251, 12569, 1289, 13241, 1361, 4001, 4441, 48409, 10529, 15761, 62501, 946769, 4729, 7841, 8419, 9001, 9619, 102409, 10891, 115601, 12251, 129641, 11369, 14449
Offset: 1
Examples
Let // denote concatenation of digits. Then: 101 = prime(26) = 1//0^2//1. 11 = prime(5) = 1^2//1. 41 = prime(13) = 2^2//1. 19 = prime(8) = 1//3^2. 1601 = prime(252) = 4^2//0//1. 251 = prime(54) = 5^2//1. 1361 = prime(218) = 1//6^2//1. 149 = prime(35) = 1//7^2. 641 = prime(116) = 8^2//1. 811 = prime(141) = 9^2//1. 1009 = prime(169) = 10^2//9. 12101 = prime(1448) = 11^2//0//1.
Comments