cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174979 Smallest prime p which is a concatenation of n^3 and the cubic digits 0, 1, 8.

Original entry on oeis.org

11, 181, 127, 641, 11251, 2161, 10343, 15121, 10729, 1000081, 81331, 117281, 12197, 1274401, 33751, 40961, 84913, 58321, 106859, 180001, 89261, 1064801, 812167, 138241, 8156251, 10175761, 196831, 2195201, 2438911, 270001, 297911
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 03 2010

Keywords

Comments

There are three decimal digits which are cubes: 0 = 0^3, 1 = 1^3, 8 = 2^3. It is conjectured that sequence is infinite.
See comments in A174926.

Examples

			41^3 = 68921, and 1689211 is the smallest prime which can be produced by concatenating 68921 with some combination of the digits 0, 1, and 8.
		

References

  • J.-P. Allouche, J. Shallit: Automatic Sequences, Theory, Applications, Generalizations, Cambridge University Press, 2003
  • C. Dumitrescu and V. Seleacu: Some Notions and Questions in Number Theory, Glendale, Arizona, Erhus University Press, 1994
  • O. Oystein: Number Theory and its History, Dover Classics of Science and Mathematics, 1988

Crossrefs

Extensions

Corrected and edited by D. S. McNeil, Nov 21 2010

A176185 Numbers n with property that concatenation (2*n+1)//n of the decimals is a square.

Original entry on oeis.org

29, 76, 2289, 3796, 6369, 8756, 16736, 19696, 24900, 28484, 77529, 83761, 94169, 222889, 887556, 22228889, 88875556, 112594641, 368762025, 651177616
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 11 2010

Keywords

Comments

Sequence is infinite; two infinite "families" of such numbers n are:
(a) n = 8_(k)75_(k)6, 2 * n + 1 = 17_(k)51_(k)3, N = 2 * 6_(k+1)16_(k-1)7,
(b) n = 2_(k+1)8_(k)9, 2 * n + 1 = 4_(k)57_(k)9, N = 6_(k)76_(k)7, (k = 1, 2, ...)
List of (2*n+1)//n = N^2:
59//29 = 7^2 x 11^2, 153//76 = 2^4 x 31^2, 4579//2289 = 67^2 x 101^2,
7593//3796 = 2^2 x 4357^2, 12739//6369 = 11287^2, 17513//8756 = 2^2 x 13^2 x 509^2,
33473//16736 = 2^18 x 113^2, 39393//19696 = 2^4 x 13^2 x 17^2 x 71^2, 49801//24900,
56969//28484 = 2^2 x 13^2 x 2903^2, 155059//77529 = 7^2 x 17789^2, 167523//83761 = 347^2 x 373^2,
188339//94169 = 19^2 x 31^2 x 233^2, 445779//222889 = 7^2 x 11^2 x 13^2 x 23^2 x 29^2,
1775113//887556 = 2^2 x 666167^2, 44457779//22228889 = 59^2 x 73^2 x 113^2 x 137^2,
177751113//88875556 = 2^2 x 66661667 ^ 2, 225189283//112594641 = 23^2 x 83^2 x 331^2 x 751^2,
737524051//368762025 = 5^2 x 2161^2 x 79481^2, 1302355233//651177616 = 2^4 x 285301949^2

Examples

			n = 29 is a term: 2 * n + 1 = 59, 5929 = 59//29 = 77^2 is a perfect square.
n = 6369 is a term: 2 * n + 1 = 12739. 12739//6369 = 11287^2 is a perfect square.
		

References

  • J. Buchmann, U. Vollmer: Binary Quadratic Forms, Springer, Berlin, 2007
  • L. E. Dickson: History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications, 2005

Crossrefs

Programs

  • Maple
    isA176185 := proc(n)
        digcat2(2*n+1,n) ; # of oeis.org/transforms.txt
        issqr(%)  ;
    end proc:
    for n from 1 do
        if isA176185(n) then
            print(n) ;
        end if;
    end do: # R. J. Mathar, May 21 2025
  • Mathematica
    Select[Range[6512*10^5],IntegerQ[Sqrt[(2 #+1)10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Mar 05 2022 *)
Showing 1-2 of 2 results.