A174979
Smallest prime p which is a concatenation of n^3 and the cubic digits 0, 1, 8.
Original entry on oeis.org
11, 181, 127, 641, 11251, 2161, 10343, 15121, 10729, 1000081, 81331, 117281, 12197, 1274401, 33751, 40961, 84913, 58321, 106859, 180001, 89261, 1064801, 812167, 138241, 8156251, 10175761, 196831, 2195201, 2438911, 270001, 297911
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 03 2010
41^3 = 68921, and 1689211 is the smallest prime which can be produced by concatenating 68921 with some combination of the digits 0, 1, and 8.
- J.-P. Allouche, J. Shallit: Automatic Sequences, Theory, Applications, Generalizations, Cambridge University Press, 2003
- C. Dumitrescu and V. Seleacu: Some Notions and Questions in Number Theory, Glendale, Arizona, Erhus University Press, 1994
- O. Oystein: Number Theory and its History, Dover Classics of Science and Mathematics, 1988
A176185
Numbers n with property that concatenation (2*n+1)//n of the decimals is a square.
Original entry on oeis.org
29, 76, 2289, 3796, 6369, 8756, 16736, 19696, 24900, 28484, 77529, 83761, 94169, 222889, 887556, 22228889, 88875556, 112594641, 368762025, 651177616
Offset: 1
Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 11 2010
n = 29 is a term: 2 * n + 1 = 59, 5929 = 59//29 = 77^2 is a perfect square.
n = 6369 is a term: 2 * n + 1 = 12739. 12739//6369 = 11287^2 is a perfect square.
- J. Buchmann, U. Vollmer: Binary Quadratic Forms, Springer, Berlin, 2007
- L. E. Dickson: History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications, 2005
-
isA176185 := proc(n)
digcat2(2*n+1,n) ; # of oeis.org/transforms.txt
issqr(%) ;
end proc:
for n from 1 do
if isA176185(n) then
print(n) ;
end if;
end do: # R. J. Mathar, May 21 2025
-
Select[Range[6512*10^5],IntegerQ[Sqrt[(2 #+1)10^IntegerLength[#]+#]]&] (* Harvey P. Dale, Mar 05 2022 *)
Showing 1-2 of 2 results.
Comments