cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A176838 Primes p such that p^3 = q//3 for a prime q, where "//" denotes concatenation.

Original entry on oeis.org

17, 157, 257, 277, 397, 677, 877, 997, 1217, 1697, 1997, 2417, 2777, 3257, 3517, 3697, 4157, 4177, 5077, 5197, 5897, 6277, 7417, 7517, 8377, 9397, 9497, 9677, 9857, 11197, 11597, 12157, 12457, 12697, 13397, 13477, 13877, 14057, 14197, 15017, 16477, 17597, 18097
Offset: 1

Views

Author

Ulrich Krug (leuchtfeuer37(AT)gmx.de), Apr 27 2010

Keywords

Comments

Diophantine equation p^3 = 10 * q + 3 with side condition p and q prime. Necessarily the LSD for such primes p is e = 7 and the two least significant digit strings are "17", "57", "77" or "97".

Examples

			17^3 = 4913 = prime(94)//3, 17 = prime(7) is the first term.
157^3 = 3869893 = prime(32838)//3, 157 = prime(37) is the second term.
		

References

  • J.-P. Allouche and J. Shallit, Automatic Sequences, Theory, Applications, Generalizations, Cambridge University Press, 2003.
  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers (Fifth edition), Oxford University Press, 1980.
  • F. Padberg, Zahlentheorie und Arithmetik, Spektrum Akademie Verlag, Heidelberg - Berlin 1999.

Crossrefs

Programs

  • Maple
    q:= n-> isprime(iquo(n^3, 10, 'd')) and d=3:
    select(q, [ithprime(i)$i=1..3000])[];  # Alois P. Heinz, Sep 03 2021
  • Mathematica
    Select[Range[7,20000,10],PrimeQ[#]&&PrimeQ[FromDigits[Most[IntegerDigits[ #^3]]]]&] (* Harvey P. Dale, Oct 03 2013 *)
  • PARI
    isok(p) = if (isprime(p), my(v=divrem(p^3,10)); isprime(v[1]) && (v[2] == 3)); \\ Michel Marcus, Sep 03 2021
  • Python
    from sympy import isprime, primerange
    def ok(p): q, r = divmod(p**3, 10); return r == 3 and isprime(q)
    print(list(filter(ok, primerange(2, 18200)))) # Michael S. Branicky, Aug 31 2021
    
Showing 1-1 of 1 results.