A175109 a(n) = ((2*n+1)^3+(-1)^n)/2.
1, 13, 63, 171, 365, 665, 1099, 1687, 2457, 3429, 4631, 6083, 7813, 9841, 12195, 14895, 17969, 21437, 25327, 29659, 34461, 39753, 45563, 51911, 58825, 66325, 74439, 83187, 92597, 102689, 113491, 125023, 137313, 150381, 164255, 178955
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
Programs
-
Magma
I:=[1, 13, 63, 171, 365]; [n le 5 select I[n] else 3*Self(n-1) - 2*Self(n-2) - 2*Self(n-3) + 3*Self(n-4) - Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
-
Maple
A175109:=n->((2*n+1)^3+(-1)^n)/2: seq(A175109(n), n=0..50); # Wesley Ivan Hurt, Apr 18 2017
-
Mathematica
CoefficientList[Series[(x^2 + 4*x + 1)*(x^2 + 6*x + 1)/((1 + x)*(x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)
Formula
a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
G.f.: (x^2+4*x+1)*(x^2+6*x+1)/((1+x)*(x-1)^4).
Comments