cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175109 a(n) = ((2*n+1)^3+(-1)^n)/2.

Original entry on oeis.org

1, 13, 63, 171, 365, 665, 1099, 1687, 2457, 3429, 4631, 6083, 7813, 9841, 12195, 14895, 17969, 21437, 25327, 29659, 34461, 39753, 45563, 51911, 58825, 66325, 74439, 83187, 92597, 102689, 113491, 125023, 137313, 150381, 164255, 178955
Offset: 0

Views

Author

R. J. Mathar, Feb 13 2010

Keywords

Comments

Partial sums of A110907. Convolution of the finite sequence (1,10,26,10,1) with A002623.

Crossrefs

Programs

  • Magma
    I:=[1, 13, 63, 171, 365]; [n le 5 select I[n] else 3*Self(n-1) - 2*Self(n-2) - 2*Self(n-3) + 3*Self(n-4) - Self(n-5): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
  • Maple
    A175109:=n->((2*n+1)^3+(-1)^n)/2: seq(A175109(n), n=0..50); # Wesley Ivan Hurt, Apr 18 2017
  • Mathematica
    CoefficientList[Series[(x^2 + 4*x + 1)*(x^2 + 6*x + 1)/((1 + x)*(x - 1)^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *)

Formula

a(n) = 3*a(n-1) -2*a(n-2) -2*a(n-3) +3*a(n-4) -a(n-5).
G.f.: (x^2+4*x+1)*(x^2+6*x+1)/((1+x)*(x-1)^4).