A175112 First differences of A175111.
1, 120, 1442, 6840, 21122, 51000, 105122, 194040, 330242, 528120, 804002, 1176120, 1664642, 2291640, 3081122, 4059000, 5253122, 6693240, 8411042, 10440120, 12816002, 15576120, 18759842, 22408440, 26565122, 31275000, 36585122
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,0,5,-4,1).
Programs
-
Magma
I:=[1, 120, 1442, 6840, 21122, 51000, 105122]; [n le 7 select I[n] else 4*Self(n-1) - 5*Self(n-2) + 5*Self(n-4) - 4*Self(n-5) + Self(n-6): n in [1..40]]; // Vincenzo Librandi, Dec 19 2012
-
Mathematica
CoefficientList[Series[(116*x + 967*x^2 + 1672*x^3 + 967*x^4 + 116*x^5 + x^6+1)/((1 + x)*(1 - x)^5), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 19 2012 *) LinearRecurrence[{4,-5,0,5,-4,1},{1,120,1442,6840,21122,51000,105122},30] (* Harvey P. Dale, Sep 12 2023 *)
Formula
a(n) = 4*a(n-1) -5*a(n-2) +5*a(n-4) -4*a(n-5) +a(n-6), n>6.
a(n) = ((2*n+1)^5-(2*n-1)^5)/2+(-1)^n, n>0.
G.f.: (116*x+967*x^2+1672*x^3+967*x^4+116*x^5+x^6+1)/((1+x)*(1-x)^5).
Comments