A175125 a(n) is the number of numbers m such that the number of iterations of r -> r - (largest divisor d < r) needed to reach 1 starting at r = m is equal to n.
1, 1, 2, 3, 5, 9, 13, 23, 36, 65, 100, 175, 275, 468, 760, 1266, 2077, 3454, 5690, 9449, 15547, 25709, 42459, 70181, 115947, 191509, 316570, 523087, 864406, 1428174, 2359266
Offset: 0
Examples
Example (a(4)=5): There are five numbers (7,9,10,12,16) with 4 steps of defined iteration: 7-1=6, 6-3=3, 3-1=2, 2-1=1; 9-3=6, 6-3=3, 3-1=2, 2-1=1; 10-5=5, 5-1=4, 4-2=2, 2-1=1; 12-6=6, 6-3=3, 3-1=2, 2-1=1; 16-8=8, 8-4=4, 4-2=2, 2-1=1.
Programs
-
PARI
a064097(n)={my(k=1,d=divisors(n),r=n-d[#d-1]);while(r>1,d=divisors(r);r-=d[#d-1];k++);k}; my(c=vector(50));for(k=2,2^20,j=a064097(k);c[j]++);concat([1],c[1..20]) \\ Hugo Pfoertner, Mar 23 2020
Extensions
a(8)-a(27) from Hugo Pfoertner, Mar 23 2020
a(28)-a(30) from Robert G. Wilson v, Apr 05 2020