A175143 a(1)=1. a(n) = the smallest integer > a(n-1) such that d(a(n))+d(a(n)+1) > d(a(n-1))+d(a(n-1)+1), where d(m) = the number of divisors of m.
1, 2, 3, 5, 8, 11, 15, 20, 24, 35, 59, 80, 84, 119, 224, 239, 335, 359, 360, 480, 539, 719, 720, 840, 1079, 1259, 1260, 1679, 2519, 4199, 5039, 5040, 6720, 7559, 9360, 10079, 10080, 15119, 20159, 25199, 25200, 27719, 32759, 43680, 50399, 55439, 75599
Offset: 1
Keywords
Links
- Amiram Eldar, Table of n, a(n) for n = 1..145
- Jean-Louis Nicolas, Nombres hautement composés, Acta Arithmetica, Vol. 49 (1988), pp. 395-412, alternative link. See p. 398.
Programs
-
Maple
A092405 := proc(n) numtheory[tau](n)+numtheory[tau](n+1) ; end proc: read("transforms") ; a092405 :=[seq(A092405(n),n=1..90000)] ; RECORDS(a092405)[2] ; # R. J. Mathar, Mar 05 2010
-
Mathematica
d1 = 1; dm = 0; s = {}; Do[d2 = DivisorSigma[0, n]; d = d1 + d2; If[d > dm, dm = d; AppendTo[s, n - 1]]; d1 = d2, {n, 2, 80000}]; s (* Amiram Eldar, Aug 24 2019 *) smi[n_]:=Module[{k=n+1,ds=DivisorSigma[0,n]+DivisorSigma[0,n+1]},While[ DivisorSigma[ 0,k]+DivisorSigma[0,k+1]<=ds,k++];k]; NestList[smi,1,50] (* Harvey P. Dale, Apr 25 2020 *)
Extensions
Extended by Ray Chandler, Mar 05 2010
Terms beyond 80 from R. J. Mathar, Mar 05 2010
Comments