A175155 Numbers m satisfying m^2 + 1 = x^2 * y^3 for positive integers x and y.
0, 682, 1268860318, 1459639851109444, 2360712083917682, 86149711981264908618, 4392100110703410665318, 8171493471761113423918890682, 15203047261220215902863544865414318, 5484296027914919579181500526692857773246, 28285239023397517753374058381589688919682, 12439333951782387734360136352377558500557329868
Offset: 1
Keywords
Examples
For m=682, m^2 + 1 = 465125 = 61^2 * 5^3.
References
- Albert H. Beiler, "The Pellian" (Chap. 22), Recreations in the Theory of Numbers, 2nd ed. NY: Dover, 1966.
- A. Cayley, Report of a committee appointed for the purpose of carrying on the tables connected with the Pellian equation ..., Collected Mathematical Papers. Vols. 1-13, Cambridge Univ. Press, London, 1889-1897, Vol. 13, pp. 430-443.
- J. M. De Koninck, Ces nombres qui nous fascinent, Ellipses, 2008, p. 108.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..292. [This list has not been proved to be complete! - _N. J. A. Sloane_, Nov 17 2012]
- E. E. Whitford, The Pell equation, New York, 1912.
- Wikipedia, Pell's equation
Programs
-
Maple
C:=array(0..20,0..20):C[1,1]=1: C[2,1]=1: n1:=682:x1:=61:for nn from 1 by 2 to 15 do:s:=0:for i from 2 to 15 do:for j from 1 to i do:C[i,j]:= C[i-1,j] + C[i-1,j-1]: od:od:for n from 1 by 2 to nn+1 do:s:=s + C[nn+1,n] * n1^(nn-n+1)*x1^(n-1)*125^((n-1)/2):od:print (s):od: # Michel Lagneau # 2nd program R. J. Mathar, Mar 16 2016: # print (nonsorted!) all solutions of A175155 up to search limit with(numtheory): # upper limit for solutions n nsearchlim := 10^40 : A175155y := proc(y::integer) local disc; disc := y^3 ; cfrac(sqrt(disc),periodic,quotients) ; end proc: for y from 2 do if issqrfree(y) then # find continued fraction for x^2-(y^3=disc)*y^2=-1, sqrt(disc) cf := A175155y(y) ; nlen := nops(op(2,cf)) ; if type(nlen,odd) then # fundamental solution fuso := numtheory[nthconver](cf,nlen-1) ; fusolx := numer(fuso) ; fusoly := denom(fuso) ; solx := fusolx ; soly := fusoly ; while solx <= nsearchlim do rhhs := solx^2-y^3*soly^2 ; if rhhs = -1 then # print("n=",solx,"x=",soly,"y=",y^3) ; print(solx) ; end if; # solutions from fundamental solution tempx := fusolx*solx+y^3*fusoly*soly ; tempy := fusolx*soly+fusoly*solx ; solx := tempx ; soly := tempy ; end do; end if; fi; end do:
-
Mathematica
nmax = 10^50; ymax = 100; instances = 10; fi[y_] := n /. FindInstance[0 <= n <= nmax && x > 0 && n^2 + 1 == x^2*y^3, {n, x}, Integers, instances]; yy = Select[Range[1, ymax, 2], !IntegerQ[Sqrt[#]] && OddQ[ Length[ ContinuedFraction[Sqrt[#]][[2]]]]&]; Join[{0}, fi /@ yy // Flatten // Union // Most] (* Jean-François Alcover, Jul 12 2017 *)
-
PARI
is(n)=ispowerful(n^2+1) \\ Charles R Greathouse IV, Nov 16 2012
Formula
m(1)=682, x(1) = 61 and m(2k+1) + x(2k+1)*sqrt(125) = (m(1) + x(1)*sqrt(125))^(2k+1) m(2k+1) = C(2k+1,0) * m(1)^(2k+1) + C(2k+1,2)*m(1)^(2k-1)*x(1)^2 + ...
Extensions
Added condition that x and y must be positive. Added missing initial term 0. Added warning that b-file has not been proved to be correct - there could be missing entries. - N. J. A. Sloane, Nov 17 2012
Comments