A175160 Primes p such that 2*p+3, 4*p+9, 8*p+21, 16*p+45, 32*p+93 and 64*p+189 are also prime.
6047, 477727, 507757, 955457, 1015517, 1360367, 1766357, 2224517, 2859977, 9628837, 13462777, 14757047, 16287247, 16878397, 18246997, 21026657, 22482767, 22892197, 23389517, 30596497, 31932227, 33145687, 35764397, 36180527, 36909277, 42627197, 43139027
Offset: 1
Examples
For p=6047, (12097, 24197, 48397, 96797, 193597, 387197) are prime.
Links
- Zak Seidov, Table of n, a(n) for n = 1..12628 (all terms up to 3*10^11)
Programs
-
Magma
[ p: p in PrimesUpTo(50000000) | IsPrime(p) and IsPrime(2*p+3) and IsPrime(4*p+9) and IsPrime(8*p+21) and IsPrime(16*p+45) and IsPrime(32*p+93) and IsPrime(64*p+189)];
-
Mathematica
okQ[n_]:=And@@PrimeQ[{3+2*n,9+4*n,21+8*n,45+16*n,93+32*n,189+64*n}]; Select[Prime[Range[2220000]],okQ] (* Harvey P. Dale, Mar 31 2012 *)
Comments