A322301
Primes p such that 5*2^p + 1 is also prime.
Original entry on oeis.org
3, 7, 13, 127, 3313, 23473, 819739
Offset: 1
-
[p: p in PrimesUpTo (10000) | IsPrime(5*2^p+1)];
-
select(p->isprime(p) and isprime(5*2^p+1),[$0..5000]); # Muniru A Asiru, Dec 19 2018
-
Select[Prime[Range[4000]], PrimeQ[5 2^# + 1] &]
A322302
Primes p such that 11*2^p + 1 is also prime.
Original entry on oeis.org
3, 5, 7, 19, 43, 127, 211, 15329, 28277, 3771821
Offset: 1
-
Filtered([1..1000], p -> IsPrime(p) and IsPrime(11*2^p+1)); # Muniru A Asiru, Dec 20 2018
-
[p: p in PrimesUpTo (6000) | IsPrime(11*2^p+1)];
-
select(p->isprime(p) and isprime(11*2^p+1),[$1..1000]); # Muniru A Asiru, Dec 20 2018
-
Select[Prime[Range[1000]], PrimeQ[11 2^# + 1] &]
A383914
Primes p such that 12*2^p + 1 is also prime.
Original entry on oeis.org
3, 199, 3187, 44683, 59971, 213319, 303091, 916771
Offset: 1
3 is a term because 12*2^3+1 = 97 (prime).
Showing 1-3 of 3 results.
Comments