A175189 Smallest integer m such that phi(phi(m))^n + tau(phi(m))^n = phi(rad(m))^n, where n is the number of iterations of phi(phi), tau(phi) and phi(rad) functions.
7, 33, 29, 59, 347, 2039, 4079, 32633, 65267, 913739, 1827479, 36549581
Offset: 1
Examples
For n=1, phi(phi(7)) = 2, tau(phi(7)) = 4, phi(rad(7)) = phi(7) = 6, then 2 + 4 = 6. For n=2, phi(phi(phi(phi(33)))) = 2, tau(phi(tau(phi(33)))) = 2, phi(rad(phi(rad(33)))) = 4, then 2 + 2 = 4. For n=3, phi(phi(phi(phi(phi(phi(29)))))) = 1, tau(phi(tau(phi(tau(phi(29)))))) = 1, phi(rad(phi(rad(phi(rad(29)))))) = 2, then 1 + 1 = 2.
References
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 840.
Links
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
- C. K. Caldwell, The Prime Glossary, Number of divisors
- Wikipedia, Euler's totient function
Programs
-
Maple
with(numtheory):for n from 1 to 100 do:indic:=0:for x from 1 to 10000 while(indic=0 ) do:x0:=x:y0:=x:z0:=x: for iter from 1 to n do:x1:=phi(phi(x0)): y1:= tau(phi(y0)): zz1:= ifactors(z0)[2] : zz2 :=mul(zz1[i][1], i=1..nops(zz1)): z1:=phi(zz2):x0:=x1:y0:=y1:z0:=z1:od :if x0 +y0=z0 then print (x):indic:=1:else fi:od:od:
-
PARI
rad(m) = factorback(factorint(m)[, 1]); \\ A007947 phi_phi(m,n) = {for (k=1, n, m = eulerphi(eulerphi(m));); m;} tau_phi(m,n) = {for (k=1, n, m = numdiv(eulerphi(m));); m;} phi_rad(m,n) = {for (k=1, n, m = eulerphi(rad(m));); m;} a(n) = {my(m=1); while (phi_phi(m,n)+ tau_phi(m,n) != phi_rad(m,n), m++); m;} \\ Michel Marcus, Sep 17 2020
Extensions
Edited by Michel Marcus, Sep 17 2020
Comments