A175204 Smallest index m such that omega(m) + omega(m+1) + omega(m+2) = n.
1, 2, 4, 10, 20, 68, 154, 644, 2210, 6578, 35308, 92378, 310154, 1042404, 5617820, 35515634, 184055430, 1082950218, 5386096364, 19304763268, 254772473240, 1383442606194
Offset: 2
Examples
For n=2, m=1 and omega(1) + omega(2) + omega(3) = 0 + 1 + 1 = 2. For n=3, m=2 and omega(2) + omega(3) + omega(4) = 1 + 1 + 1 = 3. For n=4, m=4 and omega(4) + omega(5) + omega(6) = 1 + 1 + 2 = 4. For n=5, m=10 and omega(10) + omega(11) + omega(12) = 2 + 1 + 2 = 5. For n=6, m=20 and omega(20) + omega(21) + omega(22) = 2 + 2 + 2 = 6. For n=7, m=68 and omega(68) + omega(69) + omega(70) = 2 + 2 + 3 = 7.
References
- J. Peters, A. Lodge and E. J. Ternouth, E. Gifford, Factor Table (n<100000) (British Association Mathematical Tables Vol.V), Burlington House/ Cambridge University Press London 1935.
Links
- S. Ramanujan, The normal number of prime factors of a number, Quart. J. Math. 48 (1917), 76-92.
- Eric Weisstein's World of Mathematics, Distinct Prime Factors.
Programs
-
Maple
with(numtheory): for k from 1 to 20 do :indic:=0: for n from 1 to 2000 do : s1:= ifactors(n)[2] :u1 :=s1[i][1], i=1..nops(s1):uu1:= nops(s1): s2:= ifactors(n+1)[2] :u2 :=s2[i][1], i=1..nops(s2): uu2:= nops(s2): s3:= ifactors(n+2)[2] :u3 :=s3[i][1], i=1..nops(s3): uu3:= nops(s3): if uu1+uu2+uu3 = k and indic=0 then print(n): indic:=1:else fi:od:od:
Extensions
Added punctuation to the examples. Corrected and edited by Michel Lagneau, Apr 25 2010
Use of variables adapted to OEIS standards by R. J. Mathar, Oct 12 2010
a(16) corrected and a(19)-a(23) from Donovan Johnson, Oct 22 2010
Comments