cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175204 Smallest index m such that omega(m) + omega(m+1) + omega(m+2) = n.

Original entry on oeis.org

1, 2, 4, 10, 20, 68, 154, 644, 2210, 6578, 35308, 92378, 310154, 1042404, 5617820, 35515634, 184055430, 1082950218, 5386096364, 19304763268, 254772473240, 1383442606194
Offset: 2

Views

Author

Michel Lagneau, Mar 04 2010

Keywords

Comments

The arithmetic function omega(m) + omega(m+1) + omega(m+2) = Sum_{j=0..2} A001221(m+j) starts 2, 3, 3, 4, 4, 4, 3, 4, 4, 5, 4, 5, 5, 5, 4, 4, 4, 5, 5 (m >= 1).
The sequence is a "first-serve" inverse of this function.
a(24) <= 6127197154440. [Donovan Johnson, Oct 22 2010]

Examples

			For n=2, m=1 and omega(1) + omega(2) + omega(3) = 0 + 1 + 1 = 2.
For n=3, m=2 and omega(2) + omega(3) + omega(4) = 1 + 1 + 1 = 3.
For n=4, m=4 and omega(4) + omega(5) + omega(6) = 1 + 1 + 2 = 4.
For n=5, m=10 and omega(10) + omega(11) + omega(12) = 2 + 1 + 2 = 5.
For n=6, m=20 and omega(20) + omega(21) + omega(22) = 2 + 2 + 2 = 6.
For n=7, m=68 and omega(68) + omega(69) + omega(70) = 2 + 2 + 3 = 7.
		

References

  • J. Peters, A. Lodge and E. J. Ternouth, E. Gifford, Factor Table (n<100000) (British Association Mathematical Tables Vol.V), Burlington House/ Cambridge University Press London 1935.

Crossrefs

Programs

  • Maple
    with(numtheory): for k from 1 to 20 do :indic:=0: for n from 1 to 2000 do :
    s1:= ifactors(n)[2] :u1 :=s1[i][1], i=1..nops(s1):uu1:= nops(s1): s2:= ifactors(n+1)[2] :u2 :=s2[i][1], i=1..nops(s2): uu2:= nops(s2): s3:= ifactors(n+2)[2] :u3 :=s3[i][1], i=1..nops(s3): uu3:= nops(s3): if uu1+uu2+uu3 = k and indic=0 then print(n): indic:=1:else fi:od:od:

Extensions

Added punctuation to the examples. Corrected and edited by Michel Lagneau, Apr 25 2010
Use of variables adapted to OEIS standards by R. J. Mathar, Oct 12 2010
a(16) corrected and a(19)-a(23) from Donovan Johnson, Oct 22 2010