cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175232 The smallest prime divisor of 1 + 2^2 + 3^3 + ... + n^n.

Original entry on oeis.org

5, 2, 2, 3413, 50069, 2, 2, 7, 10405071317, 2, 2, 88799, 3, 2, 2, 3, 3, 2, 2, 5, 3, 2, 2, 3, 7, 2, 2, 7, 208492413443704093346554910065262730566475781, 2, 2, 3, 17, 2, 2, 5, 61, 2, 2, 71, 11, 2, 2, 11, 7, 2, 2, 5, 3, 2, 2, 3, 3, 2, 2, 23, 3, 2, 2, 3, 44818693, 2, 2, 5
Offset: 2

Views

Author

Michel Lagneau, Mar 09 2010

Keywords

Examples

			a(2) = 5 divides 1 + 2^2.
a(3) = 2 divides 1 + 2^2 + 3^3 = 32.
a(4) = 2 divides 1 + 2^2 + 3^3 + 4^4 = 288.
a(5) = 3413 divides 1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413.
a(13) = 88799 divides 1 + 2^2 + 3^3 + ... + 13^13 = 88799 * 3514531963.
		

Crossrefs

Programs

  • Maple
    with(numtheory): s :=1: for n from 2 to 60 do ;s := s+ n^n: s1 := ifactors(s)[2] : s2 :=s1[i][1], i=1..nops(s1):print(s1[1][1]):od:
  • Mathematica
    a[n_] := FactorInteger[Sum[k^k, {k, 1, n}]][[1, 1]]; Array[a, 20, 2] (* Amiram Eldar, Feb 04 2020 *)

Formula

a(n) = A020639(A001923(n)).

Extensions

Edited by R. J. Mathar, Mar 16 2010
a(61)-a(65) from Amiram Eldar, Feb 04 2020