cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A214662 Greatest prime divisor of 1 + 2^2 + 3^3 + ... + n^n.

Original entry on oeis.org

5, 2, 3, 3413, 50069, 8089, 487, 2099, 10405071317, 1274641129, 164496735539, 3514531963, 15624709, 23747111, 10343539, 56429700667, 1931869473647715169, 2383792821710269, 144326697012150473, 2053857208873393249, 128801386946535261205906957, 2298815880166789
Offset: 2

Views

Author

Michel Lagneau, Jul 24 2012

Keywords

Examples

			a(2) = 5 divides 1 + 2^2 ;
a(3) = 2 divides 1 + 2^2 + 3^3 = 32 ;
a(4) = 3 divides 1 + 2^2 + 3^3 + 4^4 = 288 = 2^5*3^2 ;
a(5) = 3413 divides 1 + 2^2 + 3^3 + 4^4 + 5^5 = 3413.
a(13) = 3514531963 divides 1 + 2^2 + 3^3 + ... + 13^13 = 88799 * 3514531963.
		

Crossrefs

Programs

  • Magma
    [Max(PrimeDivisors(&+[k^k:k in [1..n]])):n in [2..23]]; // Marius A. Burtea, Feb 09 2020
  • Maple
    with (numtheory):
    s:= proc(n) option remember; `if`(n=1, 1, s(n-1)+n^n) end:
    a:= n-> max(factorset(s(n))[]):
    seq (a(n), n=2..23);  # Alois P. Heinz, Jul 24 2012
  • Mathematica
    s = 1; Table[s = s + n^n; FactorInteger[s][[-1, 1]], {n, 2, 24}] (* T. D. Noe, Jul 25 2012 *)
    Module[{nn=30,lst},lst=Table[n^n,{n,nn}];Table[FactorInteger[Total[Take[lst,k]]][[-1,1]],{k,2,nn}]] (* Harvey P. Dale, Oct 09 2022 *)
  • PARI
    a(n) = vecmax(factor(sum(k=1, n, k^k))[,1]); \\ Michel Marcus, Feb 09 2020
    

Formula

a(n) = A006530(A001923(n)).
Showing 1-1 of 1 results.