cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175243 Array read by antidiagonals: total number of spanning trees R_n(m) of the complete prism K_m X C_n.

Original entry on oeis.org

1, 2, 1, 3, 12, 3, 4, 75, 294, 16, 5, 384, 11664, 16384, 125, 6, 1805, 367500, 5647152, 1640250, 1296, 7, 8100, 10609215, 1528823808, 6291456000, 259200000, 16807, 8, 35287, 292626432, 380008339280, 18911429680500, 13556617751088, 59549251454
Offset: 1

Views

Author

R. J. Mathar, Mar 13 2010

Keywords

Examples

			The array starts in row n=1 as:
  1,    1,        3,         16,        125
  2,   12,      294,      16384,    1640250
  3,   75,    11664,    5647152, 6291456000
  4,  384,   367500, 1528823808,
  5, 1805, 10609215,
		

Crossrefs

Cf. A006235 (column 2), A000272, A212798 (column 3).

Programs

  • Maple
    A175243 := proc(n,m) n*2^(m-1)/m*( orthopoly[T](n,1+m/2)-1)^(m-1) ; end proc:
    for d from 2 to 10 do for m from 1 to d-1 do n := d-m ; printf("%d,",A175243(n,m)) ; end do: end do:
  • Mathematica
    r[n_, m_] := n*2^(m-1)*(ChebyshevT[n, 1+m/2]-1)^(m-1)/m; Table[r[n-m, m], {n, 2, 9}, {m, 1, n-1}] // Flatten (* Jean-François Alcover, Jan 10 2014 *)

Formula

R_n(m) = n*2^(m-1)* (T(n,1+m/2)-1)^(m-1)/m, where T(n,x) are Chebyshev polynomials, A008310.
Each column of the array is a linear divisibility sequence. Conjecturally, the k-th column satisfies a linear recurrence of order 4*k - 2. - Peter Bala, May 04 2014