A175317 a(n) = Sum_{d|n} A007955(d) where A007955(m) = product of divisors of m.
1, 3, 4, 11, 6, 42, 8, 75, 31, 108, 12, 1778, 14, 206, 234, 1099, 18, 5901, 20, 8116, 452, 498, 24, 333618, 131, 692, 760, 22166, 30, 810372, 32, 33867, 1104, 1176, 1238, 10085333, 38, 1466, 1538, 2568180, 42, 3112382, 44, 85690, 91386, 2142, 48, 255138610
Offset: 1
Keywords
Examples
For n = 4, with b(n) = A007955(n), a(4) = b(1) + b(2) + b(4) = 1 + 2 + 8 = 11.
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
a[n_] := DivisorSum[n, #^(DivisorSigma[0, #]/2) &]; Array[a, 50] (* Amiram Eldar, Oct 23 2021 *)
-
PARI
a(n) = sumdiv(n, d, vecprod(divisors(d))); \\ Michel Marcus, Dec 09 2014 and Oct 23 2021
-
Python
from math import isqrt from sympy import divisor_count, divisors def A175317(n): return sum(isqrt(d)**c if (c:=divisor_count(d)) & 1 else d**(c//2) for d in divisors(n,generator=True)) # Chai Wah Wu, Jun 24 2022
Formula
From Bernard Schott, Oct 26 2021: (Start)
a(1) = 1 (the only fixed point).
a(p) = p+1 for prime p only.
a(2^k) = A181388(k+1). (End)
Extensions
Corrected by Jaroslav Krizek, Apr 02 2010
Edited and more terms from Michel Marcus, Dec 09 2014