A175330 a(n) = bitwise AND of prime(n) and prime(n+1).
2, 1, 5, 3, 9, 1, 17, 19, 21, 29, 5, 33, 41, 43, 37, 49, 57, 1, 67, 65, 73, 67, 81, 65, 97, 101, 99, 105, 97, 113, 3, 129, 137, 129, 149, 149, 129, 163, 165, 161, 177, 181, 129, 193, 197, 195, 211, 195, 225, 225, 233, 225, 241, 1, 257, 261, 269, 261, 273, 281
Offset: 1
Examples
For n = 15, a(15) = 37 because the 15th prime is 47 and the 16th is 53, which have binary representations of 101111 and 110101 respectively; the bitwise AND of these values is 100101 which is the binary representation of 37: 101111 & 110101 -------- 100101
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..10000
- Wikipedia, Bitwise operation
Crossrefs
Programs
-
Maple
read("transforms") ; A175330 := proc(n) ANDnos(ithprime(n),ithprime(n+1)) ; end proc: seq(A175330(n),n=1..60) ; # R. J. Mathar, Apr 15 2010 # second Maple program: a:= n-> Bits[And](ithprime(n), ithprime(n+1)): seq(a(n), n=1..70); # Alois P. Heinz, Apr 15 2020
-
Mathematica
a[n_] := Prime[n]~BitAnd~Prime[n+1]; Array[a, 60] (* Jean-François Alcover, Jan 11 2021 *)
-
PARI
a(n) = bitand(prime(n), prime(n+1)); \\ Michel Marcus, Apr 16 2020
-
Scala
val prime: LazyList[Int] = 2 #:: LazyList.from(3).filter(i => prime.takeWhile { j => j * j <= i }.forall { k => i % k != 0 }) (0 to 63).map(n => prime(n) & prime(n + 1)) // Alonso del Arte, Apr 18 2020
Extensions
More terms from R. J. Mathar, Apr 15 2010
Comments