cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175361 Partial sums of A000141.

Original entry on oeis.org

1, 13, 73, 233, 485, 797, 1341, 2301, 3321, 4197, 5757, 8157, 10237, 12277, 15541, 19701, 23793, 27273, 31653, 38853, 45405, 50013, 58173, 68733, 76957, 84769, 94969, 108089, 120569, 130673, 144817, 164017, 180397, 191917, 209317, 234277, 252673, 269113, 293593
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

The 6th row of A122510.

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[EllipticTheta[3,x]^6/(1-x),{x,0,35}],x] (* Stefano Spezia, Jun 21 2024 *)
  • Python
    from math import prod
    from sympy import factorint
    def A175361(n):
        c = 1
        for m in range(1,n+1):
            f = [(p,e,(0,1,0,-1)[p&3]) for p,e in factorint(m).items()]
            c += (prod((p**(e+1<<1)-a)//(p**2-a) for p, e, a in f)<<2)-prod(((k:=p**2*a)**(e+1)-1)//(k-1) for p, e, a in f)<<2
        return c # Chai Wah Wu, Jun 21 2024

Formula

a(n^2) = A055412(n).
G.f.: theta_3(x)^6 / (1 - x). - Ilya Gutkovskiy, Feb 13 2021