A175361 Partial sums of A000141.
1, 13, 73, 233, 485, 797, 1341, 2301, 3321, 4197, 5757, 8157, 10237, 12277, 15541, 19701, 23793, 27273, 31653, 38853, 45405, 50013, 58173, 68733, 76957, 84769, 94969, 108089, 120569, 130673, 144817, 164017, 180397, 191917, 209317, 234277, 252673, 269113, 293593
Offset: 0
Keywords
Programs
-
Mathematica
CoefficientList[Series[EllipticTheta[3,x]^6/(1-x),{x,0,35}],x] (* Stefano Spezia, Jun 21 2024 *)
-
Python
from math import prod from sympy import factorint def A175361(n): c = 1 for m in range(1,n+1): f = [(p,e,(0,1,0,-1)[p&3]) for p,e in factorint(m).items()] c += (prod((p**(e+1<<1)-a)//(p**2-a) for p, e, a in f)<<2)-prod(((k:=p**2*a)**(e+1)-1)//(k-1) for p, e, a in f)<<2 return c # Chai Wah Wu, Jun 21 2024
Formula
a(n^2) = A055412(n).
G.f.: theta_3(x)^6 / (1 - x). - Ilya Gutkovskiy, Feb 13 2021
Comments