cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A175362 Number of integer pairs (x,y) satisfying |x|^3 + |y|^3 = n, -n <= x,y <= n.

Original entry on oeis.org

1, 4, 4, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

Cube variant of A004018.
Obviously, a(n) must be 4*k, for k >= 0, n > 0. - Altug Alkan, Apr 09 2016
From Robert Israel, Jan 26 2017: (Start)
a(k^3*n) >= a(n) for k >= 1.
a(n) >= 16 for n in A001235.
a(A011541(n)) >= 8*n. (End)

Examples

			a(2) = 4 counts (x,y) = (-1,1), (1,1), (-1,-1) and (1,-1).
a(9) = 8 counts (x,y) = (-2,-1), (-2,1), (-1,-2), (-1,2), (1,-2), (1,2), (2,-1) and (2,1).
		

Crossrefs

Programs

  • Maple
    N:= 200: # to get a(0)..a(N)
    G:= (1+2*add(x^(j^3),j=1..floor(N^(1/3))))^2:
    seq(coeff(G,x,j),j=0..N); # Robert Israel, Jan 26 2017
  • PARI
    a(n) = if(n==0, 1, 4*sum(k=1, sqrtnint(n, 3), ispower(n - k^3, 3))); \\ Daniel Suteu, Aug 16 2021

Formula

G.f.: ( 1 + 2 * Sum_{j>=1} x^(j^3) )^2.
a(n^3) = 4 for n > 0. - Altug Alkan, Apr 09 2016
a(n) = 4*Sum_{k=1..floor(n^(1/3))} A010057(n - k^3), for n > 0. - Daniel Suteu, Aug 15 2021

Extensions

Invalid claim that belonged to A004018 removed by R. J. Mathar, Apr 24 2010