cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A175363 Partial sums of A175362.

Original entry on oeis.org

1, 5, 9, 9, 9, 9, 9, 9, 13, 21, 21, 21, 21, 21, 21, 21, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 29, 37, 37, 37, 37, 37, 37, 37, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 53, 61, 61, 61, 61, 61, 61, 61
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

Number of integer pairs (x,y) satisfying |x|^3+|y|^3 <= n, any -n <= x,y <=n. Cubic variant of A057655.

Examples

			a(1) = 5 counts (x,y) = (-1,0), (0,-1), (0,0), (0,1) and (1,0).
		

A175365 Number of integer triples (x,y,z) satisfying |x|^3 + |y|^3 + |z|^3 = n, -n <= x,y,z <= n.

Original entry on oeis.org

1, 6, 12, 8, 0, 0, 0, 0, 6, 24, 24, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 8, 0, 0, 6, 24, 24, 0, 0, 0, 0, 0, 24, 48, 0, 0, 0, 0, 0, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 24, 0, 0, 0, 0, 0, 0, 24, 0, 6, 24, 24, 0, 0, 0, 0, 0, 24, 48, 0, 0, 0, 0, 0, 0, 24, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 48, 0, 0, 0
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

A three-dimensional variant of A175362.

Examples

			a(2) = 12 counts (x,y,z) = (-1,-1,0), (-1,0,-1), (-1,0,1), (-1,1,0), (0,-1,-1), (0,-1,1), (0,1,-1), (0,1,1), (1,-1,0), (1,0,-1), (1,0,1) and (1,1,0).
		

Programs

  • Maple
    N:= 100: # to get a(0) to a(N)
    G:= (1+2*add(x^(j^3),j=1..floor(N^(1/3))))^3:
    S:= series(G,x,N+1):
    seq(coeff(S,x,j),j=0..N); # Robert Israel, Apr 08 2016
  • Mathematica
    CoefficientList[(1 + 2 Sum[x^(j^3), {j, 4}])^3, x] (* Michael De Vlieger, Apr 08 2016 *)
  • PARI
    a(n, k=3) = if(n==0, return(1)); if(k <= 0, return(0)); if(k == 1, return(ispower(n, 3))); my(count = 0); for(v = 0, sqrtnint(n, 3), count += (2 - (v == 0))*if(k > 2, a(n - v^3, k-1), if(ispower(n - v^3, 3), 2 - (n - v^3 == 0), 0))); count; \\ Daniel Suteu, Aug 15 2021

Formula

G.f.: ( 1 + 2*Sum_{j>=1} x^(j^3) )^3.
a(n) = A175362(n) + 2*Sum_{k=1..floor(n^(1/3))} A175362(n - k^3). - Daniel Suteu, Aug 15 2021

A175368 Number of integer 4-tuples (x,y,z,u) satisfying |x|^3 + |y|^3 + |z|^3 + |u|^3 = n, -n <= x,y,z,u <= n.

Original entry on oeis.org

1, 8, 24, 32, 16, 0, 0, 0, 8, 48, 96, 64, 0, 0, 0, 0, 24, 96, 96, 0, 0, 0, 0, 0, 32, 64, 0, 8, 48, 96, 64, 0, 16, 0, 0, 48, 192, 192, 0, 0, 0, 0, 0, 96, 192, 0, 0, 0, 0, 0, 0, 64, 0, 0, 24, 96, 96, 0, 0, 0, 0, 0, 96, 192, 8, 48, 96, 64, 0, 0, 96, 0, 48, 192, 192, 0, 0, 0, 0, 0, 96, 224, 64, 0
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

A variant of A000118 with cubes instead of squares.

Examples

			a(1) = 8 counts (x,y,z,u) = (-1,0,0,0), (0,-1,0,0), (0,0,-1,0), (0,0,0,-1) and 4 more tuples with -1 replaced by +1.
a(2) = 24 counts (x,y,z,u) = (-1,-1,0,0), (-1,0,-1,0), (-1,0,0,-1), (-1,0,0,1) etc, all variants where two of the 4 values are zero and the other two +1 or -1.
		

Crossrefs

Programs

  • PARI
    a(n, k=4) = if(n==0, return(1)); if(k <= 0, return(0)); if(k == 1, return(ispower(n,3))); my(count = 0); for(v = 0, sqrtnint(n, 3), count += (2 - (v == 0))*if(k > 2, a(n - v^3, k-1), if(ispower(n - v^3, 3), 2 - (n - v^3 == 0), 0))); count; \\ Daniel Suteu, Aug 15 2021

Formula

Conjectured g.f.: (1 + 2*Sum_{j>=1} x^(j^3))^4.
a(n) = A175365(n) + 2*Sum_{k=1..floor(n^(1/3))} A175365(n - k^3). - Daniel Suteu, Aug 15 2021

A175372 Number of integer pairs (x,y) satisfying x^4 + y^4 = n.

Original entry on oeis.org

1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0
Offset: 0

Views

Author

R. J. Mathar, Apr 24 2010

Keywords

Comments

A 4th-power variant of A004018 and A175362.
a(n) is nonzero when n appears in A004831. a(n) > 8 when n appears in A003824. - Mason Korb, Oct 06 2018

Crossrefs

Cf. A003824, A004831 (where a(n) is nonzero).

Programs

  • Magma
    m:=120; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*(&+[x^(j^4): j in [1..50]]))^2)); // G. C. Greubel, Oct 06 2018
  • Maple
    seq(coeff(series((1+2*add(x^(j^4),j=1..n))^2,x,n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 07 2018
  • Mathematica
    CoefficientList[Series[(1 + 2*Sum[x^(j^4), {j, 1, 100}])^2, {x, 0, 120}], x] (* G. C. Greubel, Oct 06 2018 *)
  • PARI
    x='x+O('x^120); Vec((1+2*sum(j=1,50, x^(j^4)))^2) \\ G. C. Greubel, Oct 06 2018
    

Formula

G.f.: (1 + 2*Sum_{j>=1} x^(j^4))^2.

A331812 Number of integer solutions to x^3 + y^3 = n.

Original entry on oeis.org

2, 1, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 0, 0, 2, 0, 2, 2, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1

Views

Author

Mason Korb, Jan 27 2020

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_]:=Length[Solve[x^3 + y^3 == n, {x, y}, Integers]]; Table[a[i], {i, 10000}]
Showing 1-5 of 5 results.