A175372 Number of integer pairs (x,y) satisfying x^4 + y^4 = n.
1, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..10000
- M. Korb, What's the connection between theta series and the number of integer solutions on a curve? , Math StackExchange, July 2018.
Programs
-
Magma
m:=120; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*(&+[x^(j^4): j in [1..50]]))^2)); // G. C. Greubel, Oct 06 2018 -
Maple
seq(coeff(series((1+2*add(x^(j^4),j=1..n))^2,x,n+1), x, n), n = 0 .. 120); # Muniru A Asiru, Oct 07 2018
-
Mathematica
CoefficientList[Series[(1 + 2*Sum[x^(j^4), {j, 1, 100}])^2, {x, 0, 120}], x] (* G. C. Greubel, Oct 06 2018 *)
-
PARI
x='x+O('x^120); Vec((1+2*sum(j=1,50, x^(j^4)))^2) \\ G. C. Greubel, Oct 06 2018
Formula
G.f.: (1 + 2*Sum_{j>=1} x^(j^4))^2.
Comments